Information Technology Reference
In-Depth Information
the appropriate level of muscle force sufficiently fast and in an inappropriate scaling
of the dynamic muscle force to the movement parameters. A repetitive triphasic
pattern of muscle activation is sometimes needed to complete the movement. All of
these result in an increase of mean reaction time and a slowness of movement” [21].
References
1. Albin, R., Young, A., Penney, J. The functional anatomy of basal ganglia disorders. Trends
Neurosci 12 , 366-375 (1989)
2. Benazzouz, A., Gross, C., Dupont, J., Bioulac, B. MPTP induced hemiparkinsonism in mon-
keys: Behavioral, mechanographic, electromyographic and immunohistochemical studies.
Exp Brain Res 90 , 116-120 (1992)
3. Benecke, R., Rothwell, J., Dick, J. Performance of simultaneous movements in patients with
Parkinson's disease. Brain 109 , 739-757 (1986)
4. Berardelli, A., Dick, J., Rothwell, J., Day, B., Marsden, C. Scaling of the size of the first ag-
onist EMG burst during rapid wrist movements in patients with Parkinson's disease. J Neurol
Neurosurg Psych 49 , 1273-1279 (1986)
5. Berger, B., Trottier, S., Verney, C., Gaspar, P., Alvarez, C. Regional and laminar distribution
of dopamine and serotonin innervation in the macaque cerebral cortex: A radioautographic
study. J Comp Neurol 273 , 99-119 (1988)
6. Bjorklund, A., Lindvall, O. Dopamine containing systems in the CNS. Classical Transmit-
ters in the CNS: Part 1, Handbook of Chemical Neuroanatomy, Vol. 2, pp. 55-121. Elsevier,
Amsterdam (1984)
7. Bjorklund, A., Skagerberg, G. Evidence of a major spinal cord projection from the dien-
cephalic A11 dopamine cell group in the rat using transmitter-specific fluoroscence retrograde
tracing. Brain Res 177 , 170-175 (1979)
8. Blessing, W., Chalmers, J. Direct projection of catecholamine (presumably dopamine)-
containing neurons from the hypothalamus to spinal cord. Neurosci Lett 11 , 35-40 (1979)
9. Brown, S., Cooke, J. Initial agonist burst duration depends on movement amplitude. Exp Brain
Res 55 , 523-527 (1984)
10. Brown, S., Cooke, J. Movement related phasic muscle activation I. Relations with temporal
profile of movement. J Neurophys 63 (3), 455-464 (1990)
11. Brown, S., Cooke, J. Movement related phasicmuscle activation II. Generation and functional
role of the triphasic pattern. J Neurophysiol 63 (3), 465-472 (1990)
12. Burns, R., Chiueh, C., Markey, S., Ebert, M., Jacobowitz, D., Kopin, I. A primate model
of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the
substantia nigra by n-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA
80 , 4546-4550 (1983)
13. Camarata, P., Parker, R., Park, S., Haines, S., Turner, D., Chae, H., Ebner, T. Effects of MPTP
induced hemiparkinsonism on the kinematics of a twodimensional, multi-joint arm movement
in the rhesus monkey. Neuroscience 48 (3), 607-619 (1992)
14. Carlsson, A., Lindquist, M., Magnusson, T. 3,4-dihydroxyphenylalanine and 5-hydroxytryp-
tophan as reserpine antagonists. Nature 180 , 1200 (1957)
15. Commissiong, J., Gentleman, S., Neff, N. Spinal cord dopaminergic neurons: Evidence for an
uncrossed nigrostriatal pathway. Neuropharmacology 18 , 565-568 (1979)
16. Connor, N., Abbs, J. Task-dependent variations in parkinsonianmotor impairments. Brain 114 ,
321-332 (1991)
17. Corcos, D., Jaric, S., Gottlieb, G. Electromyographic analysis of performance enhancement.
Advances in Motor Learning and Control. Human Kinetics, Champaign, IL (1996)
18. Cutsuridis, V. Neural model of dopaminergic control of arm movements in Parkinson's disease
Bradykinesia. Artificial Neural Networks, LNCS , Vol. 4131, pp. 583-591. Springer-Verlag,
Berlin (2006)
Search WWH ::




Custom Search