Information Technology Reference
In-Depth Information
6. Brown, S., Cooke, J. Movement related phasic muscle activation II. Generation and functional
role of the triphasic pattern. J Neurophysiol 63 (3), 465-472 (1990)
7. Bullock, D., Grossberg, S. Neural dynamics of planned arm movements: Emergent inva-riants
and speed-accuracy properties during trajectory formation. Psychol Rev 95 , 49-90 (1988)
8. Bullock, D., Grossberg, S. VITE and FLETE: Neural modules for trajectory formation and
tension control. In: Volitional Action. North-Holland, Amsterdam, The Netherlands (1989).
253-297
9. Bullock, D., Grossberg, S. Adaptive neural networks for control of movement trajectories
invariant under speed and force rescaling. Hum Mov Sci 10 , 3-53 (1991)
10. Bullock, D., Grossberg, S. Emergence of triphasic muscle activation from the nonlinear inter-
actions of central and spinal neural networks circuits. Hum Mov Sci 11 , 157-167 (1992)
11. Camarata, P., Parker, R., Park, S., Haines, S., Turner, D., Chae, H., Ebner, T. Effects of MPTP
induced hemiparkinsonism on the kinematics of a two-dimensional, multi-joint arm movement
in the rhesus monkey. Neuroscience 48 (3), 607-619 (1992)
12. Chapman, C.E., Spidalieri, G., Lamarre, Y. Discharge properties of area 5 neurons during arm
movements triggered by sensory stimuli in the monkey. Brain Res 309 , 63-77 (1984)
13. Contreras-Vidal, J., Grossberg, S., Bullock, D. A neural model of cerebellar learning for arm
movement control: Cortico-spino-cerebellar dynamics. Learn Mem 3 (6), 475-502 (1997)
14. Corcos, D.M., Jaric, S., Gottlieb, G. Electromyographic analysis of performance enhance-
ment. In: Zelaznik, H.N. (ed.) Advances in Motor Learning and Control. Human Kinetics,
Vancouver, BC (1996)
15. Cutsuridis, V. Neural model of dopaminergic control of arm movements in Parkin-son's dis-
ease Bradykinesia. Artificial Neural Networks, LNCS , Vol. 4131, pp. 583-591. Springer-
Verlag, Berlin (2006)
16. Cutsuridis, V. Biologically inspired neural architectures of voluntary movement in nor-mal
and disordered states of the brain. Ph.D. Thesis (2006). Unpublished Ph.D. dissertation.
http://www.cs.stir.ac.uk/ vcu/papers/PhD.pdf
17. Cutsuridis, V. Does reduced spinal reciprocal inhibition lead to co-contraction of antagonist
motor units? a modeling study. Int J Neural Syst 17 (4), 319-327 (2007)
18. Cutsuridis, V., Perantonis, S. A neural model of Parkinson's disease bradykinesia. Neural
Netw 19 (4), 354-374 (2006)
19. Doudet, D., Gross, C., Arluison, M., Bioulac, B. Modifications of precentral cortex dis-charge
and EMG activity in monkeys with MPTP induced lesions of DA nigral lesions. Exp Brain
Res 80 , 177-188 (1990)
20. Feldman, A. Once more on the equilibrium-point hypothesis ( λ
model) for motor control.
J Mot Behav 18 , 17-54 (1986)
21. Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., Massey, J.T. On the relations between the
direction of two dimensional arm movements and cell discharge in primate motor cortex.
J Neurosci 2 , 1527-1537 (1982)
22. Ghez, C. Integration in the nervous system, chap. Contributions of Central Programs to Rapid
Limb Movement in the Cat, pp. 305-319. Igaku-Shoin, Tokyo (1979)
23. Ghez, C., Gordon, J. Trajectory control in targeted force impulses. I. Role in opposing muscles.
Exp Brain Res 67 , 225-240 (1987)
24. Ghez, C., Gordon, J. Trajectory control in targeted force impulses. II. Pulse height control.
Exp Brain Res 67 , 241-252 (1987)
25. Ghez, C., Gordon, J. Trajectory control in targeted force impulses. III. Compensatory adjust-
ments for initial errors. Exp Brain Res 67 , 253-269 (1987)
26. Gottlieb, G., Latash, M., Corcos, D., Liubinskas, A., Agarwal, G. Organizing principle for sin-
gle joint movements: I. agonist-antagonist interactions. J Neurophys 13 (6), 1417-1427 (1992)
27. Hallett, C.M., Marsden, G. Ballistic flexion movements of the human thumb. J Physiol 294 ,
33-50 (1979)
28. Hallett, M., Shahani, B., Young, R. EMG analysis of stereotyped voluntary movements in
man. J Neurol Neurosurg Psychiatr 38 , 1154-62 (1975)
29. Hannaford, B., Stark, L. Roles of the elements of the triphasic control signal. Exp Neurol 90 ,
619-634 (1985)
Search WWH ::




Custom Search