Information Technology Reference
In-Depth Information
63. Okada, Y.C., Wu, J., Kyuhou, S. Genesis of MEG signals in a mammalian CNS structure.
Electroencephalogr Clin Neurophysiol 103 (4), 474-485 (1997)
64. Parra, L.C., Spence, C.D., Gerson, A.D., Sajda, P. Recipes for the linear analysis of EEG.
NeuroImage 28 (2), 326-341 (2005)
65. Pascual-Marqui, R.D. Standardized low-resolution brain electromagnetic tomography
(sLORETA): Technical details. Methods Find Exp Clin Pharmacol 24 Suppl D, 5-12 (2002)
66. Pascual-Marqui, R.D., Lehmann, D., Koenig, T., Kochi, K., Merlo, M.C., Hell, D., Koukkou,
M. Low resolution brain electromagnetic tomography (LORETA) functional imaging in
acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Res 90 (3),
169-179 (1999)
67. Penfield, W., Jasper, H.H. Epilepsy and the Functional Anatomy of the Human Brain. Little,
Brown, Boston (1954)
68. Phillips, C., Mattout, J., Rugg, M.D., Maquet, P., Friston, K.J. An empirical Bayesian solu-
tion to the source reconstruction problem in EEG. NeuroImage 24(4), 997-1011 (2005)
69. Ramırez, R.R. Neuromagnetic Source Imaging of Spontaneous and Evoked Human Brain
Dynamics. PhD thesis, New York University School of Medicine, New York (2005)
70. Ramırez, R.R., Makeig, S. Neuroelectromagnetic source imaging using multiscale geodesic
neural bases and sparse Bayesian learning. Proceedings of the 12th Annual Meeting of the
Organization for Human Brain Mapping, Florence, Italy (2006)
71. Ramırez, R.R., Makeig, S. Neuroelectromagnetic source imaging of spatiotemporal brain
dynamical patterns using frequency-domain independent vector analysis (IVA) and geodesic
sparse Bayesian learning (gSBL). Proceedings of the 13th Annual Meeting of the Organiza-
tion for Human Brain Mapping, Chicago, IL (2007)
72. Ramırez, R.R., Makeig, S. Neuroelectromagnetic source imaging using multiscale geodesic
basis functions with sparse Bayesian learning or MAP estimation. Neural Comput (In prepa-
ration) (2010)
73. Ramırez, R.R., Wipf, D., Rao, B., Makeig, S. Sparse Bayesian learning for estimating the
spatial orientations and extents of distributed sources. Biomag 2006 - Proceedings of the
15th International Conference on Biomagnetism, Vancouver, BC, Canada (2006)
74. Rao, B.D., Engan, K., Cotter, S.F., Palmer, J., Kreutz-Delgado, K. Subset selection in noise
based on diversity measure minimization. IEEE Trans Signal Process 51 (3), 760-770 (2002)
75. Rao, B.D., Kreutz-Delgado, K. An affine scaling methodology for best basis selection. IEEE
Trans Signal Process 1 , 187-202 (1999)
76. Ribary, U., Ioannides, A.A., Singh, K.D., Hasson, R., Bolton, J.P., Lado, F., Mogilner, A., Lli-
nas, R. Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans.
Proc Natl Acad Sci USA 88 (24), 11037-11041 (1991)
77. Sarnthein, J., Morel, A., von Stein, A., Jeanmonod, D. Thalamic theta field potentials
and EEG: High thalamocortical coherence in patients with neurogenic pain, epilepsy and
movement disorders. Thalamus Related Syst 2 (3), 231-238 (2003)
78. Sarvas, J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse
problem. Phys Med Biol 32 (1), 11-22 (1987)
79. Sato, M., Yoshioka, T., Kajihara, S., Toyama, K., Naokazu, G., Doya, K., Kawatoa, M. Hier-
archical Bayesian estimation for MEG inverse problem. NeuroImage 23 , 806-826 (2004)
80. Scherg, M., Berg, P. Use of prior knowledge in brain electromagnetic source analysis. Brain
Topogr 4 (2), 143-150 (1991)
81. Schimpf, P.H., Liu, H., Ramon, C., Haueisen, J. Efficient electromagnetic source imaging
with adaptive standardized LORETA/FOCUSS. IEEE Trans Biomed Eng 52 (5), 901-908
(2005)
82. Schmidt, D.M., George, J.S., Wood, C.C. Bayesian inference applied to the electromagnetic
inverse problem. Hum Brain Mapp 7 (3), 195-212 (1999)
83. Sekihara, K., Nagarajan, S., Poeppel, D., Miyashita, Y. Time-frequency MEG-music
algorithm. IEEE Trans Med Imaging 18 (1), 92-97 (1999)
84. Tallon-Baudry, C., Bertrand, O., Delpuech, C., Pernier, J. Stimulus specificity of phaselocked
and non-phase-locked 40 Hz visual responses in human. J Neurosci 16 (13), 4240-4249
(1996)
Search WWH ::




Custom Search