Information Technology Reference
In-Depth Information
As in all experimental data analysis methods, one should bare in mind the balance
between the sophistication of the methods involved, that should include all the prior
information available to the scientist, and the robustness to deviations of the model
from reality (head position, conductivity of tissues, etc.).
Multiple commercial and academic software solutions are now available to the
scientist and clinician, which can help him/her grow confident of this exciting tech-
nique that images brain functions at high-temporal resolution.
References
1. Adrian, E., Mathews, B. The Berger rhythm: Potential changes from the occipital lobes in
man. Brain 57, 355-385 (1934)
2. Ahlfors, S.P., Ilmoniemi, R.J., Hamalainen, M.S. Estimates of visually evoked cortical
currents. Electroencephalogr Clin Neurophysiol 82 (3), 225-236 (1992)
3. Akalin-Acar, Z., Gencer, N.G. An advanced boundary element method (BEM) implemen-
tation for the forward problem of electromagnetic source imaging. Phys Med Biol 49 (21),
5011-5028 (2004)
4. Attal, Y., Bhattacharjee, M., Yelnik, J., Cottereau, B., Lefvre, J., Okada, Y., Bardinet, E.,
Chupin, M., Baillet, S. Modeling and detecting deep brain activity with MEG & EEG. Conf
Proc IEEE Eng Med Biol Soc, 4937-4940 (2007)
5. Auranen, T., Nummenmaa, A., Hamalainen, M.S., Jaaskelainen, I.P., Lampinen, J., Vehtari,
A., Sams, M. Bayesian analysis of the neuromagnetic inverse problem with lp-norm priors.
NeuroImage 26 (3), 870-884 (2005)
6. Baillet, S., Mosher, J.C., Leahy, R.M. Electromagnetic brain mapping. IEEE Signal Process
Mag 18 (6), 14-30 (2001)
7. Bell, A.J., Sejnowski, T.J. An information-maximization approach to blind separation and
blind deconvolution. Neural Comput 7 (6), 1129-1159 (1995)
8. Berger, H. Uber das Elektroenkephalogramm des Menschen. Archiv fur Psychiatrie und
Nervenkrankheiten 87 , 527-570 (1929)
9. Bertrand, C., Ohmi, M., Suzuki, R., Kado, H. A probabilistic solution to the MEG inverse
problem via MCMC methods: The reversible jump and parallel tempering algorithms. IEEE
Trans Biomed Eng 48 (5), 533-542 (2001)
10. Bolton, J.P.R., Gross, J., Liu, A.K., Ioannides, A.A. SOFIA: Spatially optimal fast initial
analysis of biomagnetic signals. Phys Med Biol 44 , 87-103 (1999)
11. Canolty, R.T., Edwards, E., Dalal, S.S., Soltani, M., Nagarajan, S.S., Kirsch, H.E., Berger,
M.S., Barbaro, N.M., Knight, R.T. High gamma power is phase-locked to theta oscillations
in human neocortex. Science 313 (5793), 1626-1628 (2006)
12. Cohen, D. Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm
currents. Science 161 , 784-786 (1968)
13. Cohen, D. Magnetoencephalography: Detection of the brain's electrical activity with a
superconducting magnetometer. Science 175 , 664-666 (1972)
14. Cotter, S.F., Rao, B.D., Engan, K., Kreutz-Delgado, K. Sparse solutions to linear inverse
problems with multiple measurement vectors. IEEE Trans Signal Process 53 (7), 2477-2488
(2005)
15. Dale, A.M., Liu, A.K., Fischl, B.R., Buckner, R.L., Belliveau, J.W., Lewine, J.D., Halgren,
E. Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution
imaging of cortical activity. Neuron 26 (1), 55-67 (2000)
16. Darvas, F., Ermer, J.J., Mosher, J.C., Leahy, R.M. Generic head models for atlas-based EEG
source analysis. Hum Brain Mapp 27 (2), 129-143 (2006)
17. Dogdas, B., Shattuck, D.W., Leahy, R.M. Segmentation of skull and scalp in 3-D human
MRI using mathematical morphology. Hum Brain Mapp 26 (4), 273-285 (2005)
Search WWH ::




Custom Search