Biomedical Engineering Reference
In-Depth Information
for direct imaging of brain neuroelectric activity in vivo are
currently underway.
With these challenges addressed, the potential of using LEI
to directly and noninvasively image neural activations in real time
can be realized to achieve both a high temporal resolution and
spatial specificity as compared to conventional BOLD fMRI, and
to help determine hierarchical organizations within activated neu-
ral networks. It is anticipated that, if even moderately successful,
this technique could have a significant impact on neuroscience
research.
Acknowledgments
This work was, in part, supported by the NIH (NS 50329, NS
41328) and NSF (BES 602529).
References
1. K.K. Kwong, J.W. Belliveau, D.A. Chesler,
I.E. Goldberg, R.M. Weisskoff, B.P. Poncelet,
D.N. Kennedy, B.E. Hoppel, M.S. Cohen,
R. Turner, H.-M. Cheng, T.J. Brady, B.R.
Rosen, Dynamic magnetic resonance imaging
of human brain activity during primary sen-
sory stimulation, Proc. Natl. Acad. Sci. USA
89 (1992) 5675-5679.
2. P.A. Bandettini, E.C. Wong, R.S. Hinks,
R.S. Tikofski, J.S. Hyde, Time course EPI
of human brain function during task acti-
vation,
8. J. Bodurka, A. Jesmanowicz, J.S. Hyde, H.
Xu, L. Estkowski, S.J. Li, Current-induced
magnetic resonance phase imaging, J. Magn.
Reson. 137 (1999) 265-271.
9. J. Bodurka, P.A. Bandettini, Toward direct
mapping of neuronal activity: MRI detec-
tion of ultraweak, transient magnetic field
changes,
Magn.
Reson.
Med.
47
(2002)
1052-1058.
10. D. Konn, P. Gowland, R. Bowtell, MRI
detection of weak magnetic fields due to
an extended current dipole in a conducting
sphere: A model for direct detection of neu-
ronal currents in the brain, Magn. Reson.
Med. 50 (2003) 40-49.
11. H. Kamei, K. Iramina, K. Yoshikawa, S. Ueno,
Neuronal current distribution imaging using
magnetic resonance, IEEE Trans. Magn. 35
(1999) 4109-4111.
12. J. Xiong, P.T. Fox, J.H. Gao, Directly map-
ping magnetic field effects of neuronal activity
by magnetic resonance imaging, Hum. Brain
Mapp. 20 (2003) 41-49.
13. R. Chu, J.A. de Zwart, P. van Gelderen,
M.Fukunag , .Ke lman,T.Ho royd,
J.H. Duyn, Hunting for neuronal currents:
Absence of rapid MRI signal changes dur-
ing visual-evoked response, Neuroimage 23
(2004) 1059-1067.
14. M.
Magn.
Reson.
Med.
25
(1992)
390-397.
3. S. Ogawa, D.W. Tank, R. Menon, J.M. Eller-
mann, S.G. Kim, H. Merkle, K. Ugurbil,
Intrinsic signal changes accompanying sen-
sory stimulation: functional brain mapping
with magnetic resonance imaging, Proc. Natl.
Acad. Sci. USA 89 (1992) 5951-5955.
4. S. Ogawa, R.S. Menon, D.W. Tank, D.G. Kim,
H. Merkle, J.M. Ellermann, K. Ugurbil, Func-
tional brain mapping by blood oxygenation
level-dependent contrast magnetic resonance
imaging. A comparison of signal characteris-
tics with a biophysical model, Biophys. J. 64
(1993) 803-812.
5. S.G. Kim, W. Richter, K. Ugurbil, Limitations
of temporal resolution in functional MRI,
Magn. Reson. Med. 37 (1997) 631-636.
6. R.L. Buckner, Event-related fMRI and the
hemodynamic response, Hum. Brain Mapp. 6
(1998) 373-377.
7. M. Joy, G. Scott, M. Henkelman, In vivo
detection of applied electric currents by mag-
netic resonance imaging, Magn. Reson. Imag-
ing 7 (1989) 89-94.
Bianciardi,
F.
Di
Russo,
T.
Aprile,
B.
Maraviglia,
G.E.
Hagberg,
Combina-
tion of
BOLD-fMRI and
VEP recordings
for
spin-echo
MRI
detection
of
primary
magnetic
effects
caused
by
neuronal
cur-
rents,
Magn.
Reson.
Imaging
22
(2004)
1429-1440.
Search WWH ::




Custom Search