Biomedical Engineering Reference
In-Depth Information
38. Sanada, S., N. Murakami, and S. Ohtahara,
Changes in blood flow of the middle cerebral
artery during absence seizures . Pediatric Neu-
rology, 1988. 4 (3): p. 158-161.
39. Sperling, M.R. and B.E. Skolnick, Cerebral
blood flow during spike-wave discharges . Epilep-
sia, 1995. 36 (2): p. 156-163.
40. Diehl, B., et al., Cerebral hemodynamic
response to generalized spike-wave discharges .
Epilepsia, 1998. 39 (12): p. 1284-1289.
41. Ochs, R.F., et al., Effect of generalized spike-
and-wave discharge on glucose metabolism mea-
sured by positron emission tomography . Annals
of Neurology, 1987. 21 (5): p. 458-464.
42. Park, Y.D., et al., Focal cerebral metabolic
abnormality in a patient with continuous spike
waves during slow-wave sleep . Journal of Child
Neurology, 1994. 9 (2): p. 139-143.
43. Ferrie, C.D., et al., Focal abnormali-
ties detected by 18FDG PET in epileptic
encephalopathies.[comment] . Archives of Dis-
ease in Childhood, 1996. 75 (2): p. 102-107.
44. Nehlig, A., et al., Local cerebral glucose uti-
lization in rats with petit mal-like seizures .
Annals of Neurology, 1991. 29 (1): p. 72-77.
45. Ives, J.R., et al., Monitoring the patient's EEG
during echo planar MRI . Clin. Neurol., 1993.
87 : p. 417-420.
46. Goldman, R.I., et al., Acquiring simultane-
ous EEG and functional MRI . Clinical Neuro-
physiology, 2000. 111 (11): p. 1974-1980.
47. Gotman, J., et al., Combining EEG and
fMRI: A multimodal tool for epilepsy research .
Journal
54. Shulman, R.G., F. Hyder, and D.L. Rothman,
Biophysical basis of brain activity: Implications
for neuroimaging . Quarterly Reviews of Bio-
physics, 2002. 35 (3): p. 287-325.
55. Logothetis,
N.K.,
et al.,
Neurophysio-
logical
investigation
of
the
basis
of
the
fMRI
signal .
Nature,
2001.
412 (6843):
p. 150-157.
56. Smith, A.J., et al., Cerebral energetics and
spiking frequency: The neurophysiological basis
of fMRI.[see comment] . Proceedings of the
National Academy of Sciences of the United
States of America, 2002. 99 (16): p. 10765-
10770.
57. Martin, C., et al., Haemodynamic and neural
responses to hypercapnia in the awake rat . Euro-
pean Journal of Neuroscience, 2006. 24 (9):
p. 2601-2610.
58. Stefanovic, B., J.M. Warnking, and G.B. Pike,
Hemodynamic and metabolic responses to neu-
ronal inhibition . Neuroimage, 2004. 2 2(2):
p. 771-778.
59. Shmuel, A., et al., Negative functional MRI
response correlates with decreases in neuronal
activity in monkey visual area V1 .NatureNeu-
roscience, 2006. 9 (4): p. 569-577.
60. Suh, M., et al., Neurovascular coupling and
oximetry during epileptic events . Molecular
Neurobiology, 2006. 33 (3): p. 181-197.
61. Schridde, U., et al., Negative BOLD with
large increases in neuronal activity . Cerebral
Cortex, 2008. 1 8: 1814-1827.
62. Stefanovic, B., et al., Hemodynamic and
metabolic responses to activation , deactivation
and epileptic discharges . Neuroimage, 2005.
28 (1) : p. 205-215.
63. Hamandi, K., et al., EEG-fMRI of idiopathic
and secondarily generalized epilepsies .Neu-
roimage, 2006. 31 (4): p. 1700-1710.
64. Archer, J.S., et al., fMRI “deactivation” of the
posterior cingulate during generalized spike and
wave . Neuroimage, 2003. 2 0(4): p. 1915-
1922.
65. Labate, A., et al., Typical childhood absence
seizures
of
Magnetic
Resonance
Imaging,
2006. 23 (6): p. 906-920.
48. Attwell, D. and S.B. Laughlin, An energy
budget for signaling in the grey matter of the
brain . Journal of Cerebral Blood Flow &
Metabolism, 2001. 21 : p. 1133-1145.
49. Ogawa, S., et al., On the characteristics of
functional magnetic resonance imaging of the
brain .
Annu
Rev
Biophys
Biomol
Struct,
1998. 27 : p. 447-474.
50. Hyder, F., et al., Quantitative functional
imaging of the brain: Towards mapping neu-
ronal activity by BOLD fMRI .NMRin
Biomedicine, 2001. 14 (7-8): p. 413-431.
51. Ogawa, S., et al., Functional Brain mapping
by blood oxygenation level-dependent contrast
magnetic resonance imaging . Biophys J, 1993.
64 : p. 803-812.
52. Kennan, R.P., J. Zhong, and J.C. Gore,
Intravascular susceptibility contrast mecha-
nisms in tissue . Magn Reson Med, 1994. 31 :
p. 9-21.
53. Weisskoff, R.M., et al., Microscopic susceptibil-
ity variation and transverse relaxation: Theory
and experiment . Magn Reson Med, 1994. 31 :
p. 601-610.
are
associated
with
thalamic
acti-
vation .
Epileptic
Disorders,
2005.
7 (4):
p. 373-377.
66. Laufs, H., et al., Linking generalized spike-
and-wave discharges and resting state brain
activity by using EEG/fMRI in a patient
with absence seizures . Epilepsia, 2006. 47 (2):
p. 444-448.
67. Aghakhani, Y., et al., Cortical and thalamic
fMRI responses in partial epilepsy with focal and
bilateral synchronous spikes . Clin Neurophysiol,
2006. 117 (1): p. 177-1791.
68. Berman, R., et al., Combined EEG and fMRI
during typical childhood absence seizures at 3T .
Epilepsia. AES abstracts., 2005.
Search WWH ::




Custom Search