Biomedical Engineering Reference
In-Depth Information
grant to the Yale Medical Scientist Training Program and Army
Research Office for NSN.
References
1. Nicolelis, M.A., et al., Simultaneous encod-
ing of tactile information by three primate
cortical
14. Narayanan, N.S., E.Y. Kimchi, and M.
Laubach, Redundancy and synergy of neuronal
ensembles in motor cortex . J Neurosci, 2005.
25 (17): p. 4207-16.
15. Averbeck, B.B. and D. Lee, Neural noise
and movement-related codes in the macaque
supplementary motor area . J Neurosci, 2003.
23 (20): p. 7630-41.
16. Averbeck, B.B., et al., Neural activity in
prefrontal cortex during copying geometrical
shapes. II. Decoding shape segments from neural
ensembles .
areas .
Nat
Neurosci,
1998.
1 (7):
p. 621-30.
2. Nicolelis, M.A., ed. Methods In Neuronal
Ensemble Recording . 1998, CRC Press: Boca
Raton, FL.
3. Wessberg, J., et al., Real-time prediction of
hand trajectory by ensembles of cortical neu-
rons in primates . Nature, 2000. 408 (6810):
p. 361-5.
4. Carmena, J.M., et al., Learning to control
a brain-machine interface for reaching and
grasping by primates . PLoS Biol, 2003. 1 (2):
p. E42.
5. Laubach, M., N.S. Narayanan, and E.Y.
Kimchi, Single-neuron and ensemble contribu-
tions to decoding simultaneously recorded spike
trains ,in Neuronal population recordings ,C.
Holscher, Editor. 2007.
6. Shepherd, G., Synaptic Organization of The
Brain . 34d ed. 2003, Oxford: Oxford Univer-
sity Press.
7. Mountcastle, V.B., Perceptual Neuroscience:
The Cerebral Cortex . 1998, Cambridge, MA:
Harvard College.
8. Gochin, P.M., et al., Neural ensemble coding
in inferior temporal cortex . J Neurophysiol,
1994. 71 (6): p. 2325-37.
9. Britten, K.H., et al., A relationship between
behavioral choice and the visual responses of neu-
rons in macaque MT . Vis Neurosci, 1996.
13 (1): p. 87-100.
10. Rolls, E.T., A. Treves, and M.J. Tovee,
The representational capacity of the distributed
encoding of information provided by pop-
ulations of neurons in primate temporal
visual cortex . Exp Brain Res, 1997. 114 (1):
p. 149-62.
11. Rolls, E.T., et al., Information encoding in the
inferior temporal visual cortex: contributions of
the firing rates and the correlations between the
firing of neurons . Biol Cybern, 2004. 9 0(1):
p. 19-32.
12. Reich, D.S., F. Mechler, and J.D. Victor, Inde-
pendent and redundant information in nearby
cortical neurons . Science, 2001. 294 (5551):
p. 2566-8.
13. Zohary, E., M.N. Shadlen, and W.T. New-
some, Correlated neuronal discharge rate and
its implications for psychophysical performance .
Nature, 1994. 370 (6485): p. 140-3.
Exp
Brain
Res,
2003.
150 (2):
p. 142-53.
17. Averbeck, B.B. and D. Lee, Coding and trans-
mission of information by neural ensembles .
Trends Neurosci, 2004. 27 (4): p. 225-30.
18. Dan, Y., et al., Coding of visual informa-
tion by precisely correlated spikes in the lateral
geniculate nucleus . Nat Neurosci, 1998. 1 (6):
p. 501-7.
19. Vaadia, E., et al., Dynamics of neuronal
interactions in monkey cortex in relation to
behavioural events . Nature, 1995. 3 73(6514):
p. 515-8.
20. Narayanan, N.S., N.K. Horst, and M.
Laubach, Reversible inactivations of rat medial
prefrontal cortex impair the ability to wait for a
stimulus . Neuroscience, 2006.
21. Narayanan, N.S. and M. Laubach, Top-down
control of motor cortex ensembles by dorsome-
dial prefrontal cortex . Neuron, 2006. 52 (5):
p. 921-31.
22. Laubach, M., M. Shuler, and M.A. Nicolelis,
Independent component analyses for quantify-
ing neuronal ensemble interactions . J Neurosci
Methods, 1999. 94 (1): p. 141-54.
23. Aertsen, A.M. and G.L. Gerstein, Evalu-
ation of neuronal connectivity: sensitivity of
cross-correlation .
Brain
Res,
1985. 340 (2):
p. 341-54.
24. Perkel, D.H., et al., Nerve-impulse patterns: A
quantitative display technique for three neurons .
Brain Res, 1975. 100 (2): p. 271-96.
25. Constantinidis, C., M.N. Franowicz, and P.S.
Goldman-Rakic, Coding specificity in cortical
microcircuits: A multiple-electrode analysis of
primate prefrontal cortex . J Neurosci, 2001.
2 1(10): p. 3646-55.
26. Brody, C.D., Slow covariations in neuronal
resting potentials can lead to artefactually fast
cross-correlations in their spike trains . J Neuro-
physiol, 1998. 80 (6): p. 3345-51.
Search WWH ::




Custom Search