Biomedical Engineering Reference
In-Depth Information
12. Fukuda, M. et al. (2005) Localization of
activity-dependent changes in blood vol-
ume to submillimeter-scale functional domains
in cat visual cortex. Cereb Cortex 15 (6),
823-833
13. Tsunoda, K. et al. (2004) Mapping cone- and
rod-induced retinal responsiveness in macaque
retina by optical imaging. Invest Ophthalmol
Vis Sci 45 (10), 3820-3826
14. Hanazono, G. et al. (2007) Intrinsic signal
imaging in macaque retina reveals different
types of flash-induced light reflectance changes
of different origins. Invest Ophthalmol Vis Sci
48, 2903-2912
15. Bowmaker, J.K. et al. (1980) Microspec-
trophotometric demonstration of four classes
of
27. Bonhoeffer, T. and Grinvald, A. (1996) Opti-
cal Imaging Based on Intrinsic Signals: The
Methodology. In Brain Mapping (Toga, A.W.
and Mazziotta, J.C., eds.), pp. 55-97, Aca-
demic Press, New York
28. Yao, X.C. et al. (2005) Rapid optical coher-
ence tomography and recording functional
scattering
changes
from
activated
frog
retina. Appl Opt 44 (11), 2019-2023
29. Bizheva, K. et al. (2006) Optophysiology:
depth-resolved probing of retinal physiology
with functional ultrahigh-resolution optical
coherence tomography. Proc Natl Acad Sci U
SA 103 (13), 5066-5071
30. Srinivasan, V.J. et al. (2006) In vivo measure-
ment of retinal physiology with high-speed
ultrahigh-resolution optical coherence tomog-
raphy. Opt Lett 31 (15), 2308—2310
31. Huang, D. et al. (1991) Optical coherence
tomography. Science 254 (5035), 1178-1181
32. Bouma, B.E. and Tearney, G.J. (2002) Hand-
topic of Optical Coherence Tomography , Marcel
Dekker Inc.
33. Malonek, D. et al. (1997) Vascular imprints
of neuronal activity: relationships between the
dynamics of cortical blood flow, oxygenation,
and volume changes following sensory stim-
ulation. Proc Natl Acad Sci U S A 94 (26),
14826-14831
34. Tomita, M. et al. (1983) Effects of hemoly-
sis, hematocrit, RBC swelling, and flow rate
on light scattering by blood in a 0.26 cm ID
transparent tube. Biorheology 20 (5), 485-494
35. Holthoff, K. and Witte, O.W. (1998) Intrin-
sic optical signals in vitro: A tool to measure
alterations in extracellular space with two-
dimensional resolution. Brain Res Bull 47 (6),
649-655
36. Rajagopalan, U.M. et al. (2003) Functional
optical coherence tomography to reveal func-
tional
photoreceptor
in
an
old
world
pri-
mate,
Macaca
fascicularis.
JPh iol 298,
131-143
16. Kilbride, P.E. et al. (1983) Determination of
human cone pigment density difference spec-
tra in spatially resolved regions of the fovea.
Vision Res 23 (12), 1341-1350
17. Kilbride, P.E. et al. (1989) Human macular
pigment assessed by imaging fundus reflec-
tometry. Vision Res 29 (6), 663-674
18. Elsner, A.E. et al. (1993) Mapping cone pho-
topigment optical density. J Opt Soc Am A 10
(1), 52-58
19. Mandelbaum, J. and Sloan, L.L. (1947)
Peripheral visual acuity. Am J Ophthalmol 30,
581-588
20. Birch, D.G. et al. (1987) The relation-
ship between rod perimetric thresholds and
full-field
rod
ERGs
in
retinitis
pigmen-
tosa.
Invest
Ophthalmol
Vis
Sci
28
(6),
954-965
21. Pulos, E. (1989) Changes in rod sensitivity
through adulthood. Invest Ophthalmol Vis Sci
30 (8), 1738-1742
22. Osterberg, G. (1935) Topography of the layer
of rods and cones in the human retina. Acta
ophthalmol 13 (Suppl 6), 6-97
23. Curcio, C.A. et al. (1987) Distribution of
cones in human and monkey retina: Individual
variability and radial asymmetry. Science 236
(4801), 579-582
24. Packer, O. et al. (1989) Photoreceptor
topography of the retina in the adult pigtail
macaque (Macaca nemestrina). JCompNeurol
288 (1), 165-183
25. Sutter, E.E. and Tran, D. (1992) The field
topography of ERG components in man - I.
The photopic luminance response. Vision Res
32 (3), 433-446
26. Weinhaus, R.S. et al. (1995) Comparison of
fluorescein angiography with microvascular
anatomy of macaque retinas. Exp Eye Res 61
(1), 1-16
architecture
of
cat
visual
cortex
in
vivo.
In
Proceedings
of
SPIE
(Vol. 5140),
pp. 77-83
37. Maheswari, R.U. et al. (2003) Novel func-
tional imaging technique from brain surface
with optical coherence tomography enabling
visualization of depth resolved functional
structure in vivo. J Neurosci Methods 124
(1), 83-92
38. Lazebnik, M. et al. (2003) Functional opti-
cal coherence tomography for detecting neural
activity through scattering changes. Opt Lett
28 (14), 1218-1220
39. Hubel, D.H. and Wiesel, T.N. (1977) Func-
tional architecture of macaque monkey visual
cortex. Proc R Soc Lond B Biol Sci (198), 1-59
40. Rajagopalan, U.M. et al. (1999) An opti-
cal
coherence
tomographic
imaging
sys-
tem
for
investigating
cortical
functional
Search WWH ::




Custom Search