Digital Signal Processing Reference
In-Depth Information
Namely:
2
3
2
3
2
3
v 1 .B 1 ;L 1 / VTEC
v 1 .B 2 ;L 2 / VTEC
:
v 1 .B m ;L m / VTEC
a 1
a 2
:
a n
Q .B 1 ;L 1 ;B i1 ;L i1 /
Q .B 1 ;L 1 ;B in ;L in /
4
5
4
5
4
5
:
Q .B m ;L m ;B i1 ;L i1 / Q .B m ;L m ;B in ;L in /
:
D
(4.21)
The error equation is as follows:
v D Qa v VTEC
(4.22)
Through the Eq. ( 4.22 ) we can obtain the vector a by a weighted least squares
adjustment to all GPS observations in each epoch, namely
a D Q T P v Q 1 Q T P v v
(4.23)
where P v is the weight matrix of the VTEC. And that, we can obtain the VTEC of
random grid sites, namely: VTEC h D Q h t a , where Q t h D Q h1 Q h2
Q hi .
4.3.1.4
Spherical Harmonics Functions
For global VTEC expression, spherical harmonics functions are widely used (Schaer
1999 ).
n max
X
X
n
P nm .sin ˇ/.a nm cos ms C b nm sin ms/
VTEC .'; / D
(4.24)
n
D
0
m
D
0
ˇ is the latitude of the ionosphere pierce point, s D 0 is the sun-fixed
longitude. , 0 are the longitude of the ionosphere pierce point and the apparent
solar time. a nm , b nm are the ionosphere model's coefficients.
P nm are normalized
Legendre polynomials. Normalization function is as follow.
s .n m/Š .2n C 1/.2 ı om /
.n C m/Š
ƒ D
(4.25)
4.3.1.5
Triangular Grid Method
Another VTEC description is used in JPL's global VTEC computation. They use
triangular grid to express the global VTEC distribution and variation. For each grid
 
Search WWH ::




Custom Search