Information Technology Reference
In-Depth Information
then D =( E; F; A; L ) constitutes an action domain. An excerpt of its tran-
sition model is shown in Table 1.1. Let O consist of the observations
8x: up ( x ) _8x: : up ( x )
after
[ toggle ( s 2 )]
:
(
s 1 )
after
[
(
s 1 )]
up
toggle
then ( O; D ) is an action scenario. Each of its models ( ;Res ) satises one
of
Res ([
toggle
(
s 1 ) ;
toggle
(
s 2 )]) = f:
up
(
s 1 ) ;
up
(
s 2 ) ; :
light
g
(the model depicted in Fig. 1.1 does this, for instance) or
Res ([ toggle ( s 1 ) ; toggle ( s 2 )]) = f: up ( s 1 ) ; up ( s 2 ) ; light g
In both resulting states :
s 2 ) hold. Thus we obtain
O = D : up ( s 1 ) ^ up ( s 2 ) after [ toggle ( s 1 ) ; toggle ( s 2 )]
(
s 1 ) and
(
up
up
The, admittedly simple, action theory we arrived at contains all of the
basics requested at the beginning: The theory provides a language for for-
malizing both general action domains and specic scenarios. It also includes
an entailment relation that tells us precisely what can be concluded from
Table 1.1. The transition model assigns each pair of state and action a set of
preliminary successor states.
S
a
( S; a )
toggle ( s 1 )
ff up ( s 1 ) ; : up ( s 2 ) ; : light gg
f: up ( s 1 ) ; : up ( s 2 ) ; : light g
toggle ( s 2 )
ff: up ( s 1 ) ; up ( s 2 ) ; : light gg
f up ( s 1 ) ; : up ( s 2 ) ; : light g;
f: up ( s 1 ) ; up ( s 2 ) ; : light g
switch-one-up
toggle ( s 1 )
ff: up ( s 1 ) ; : up ( s 2 ) ; : light gg
f up ( s 1 ) ; : up ( s 2 ) ; : light g
toggle ( s 2 )
ff up ( s 1 ) ; up ( s 2 ) ; : light gg
ff up ( s 1 ) ; up ( s 2 ) ; : light gg
switch-one-up
.
.
.
toggle ( s 1 )
ff: up ( s 1 ) ; up ( s 2 ) ; light gg
f up ( s 1 ) ; up ( s 2 ) ; light g
toggle ( s 2 )
ff up ( s 1 ) ; : up ( s 2 ) ; light gg
fg
switch-one-up
Search WWH ::




Custom Search