Image Processing Reference
In-Depth Information
Ikedo, Yuji, Takako Morita, Daisuke Fukuoka, Takeshi Hara, Gobert Lee, Hiroshi Fu-
jita, Etsuo Takada, and Tokiko Endo. 2009. Automated analysis of breast parenchy-
mal patterns in whole breast ultrasound images: preliminary experience. Interna-
tional Journal of Computer Assisted Radiology and Surgery 4(3):299-306.
Kerre, E., and M. Nachtegael. 2000. Fuzzy techniques in image processing: Techniques
and applications. In Studies in fuzziness and soft computing, vol. 52.
Maglogiannis, Ilias, Elias Zafiropoulos, and Ioannis Anagnostopoulos. 2007. An intel-
ligent system for automated breast cancer diagnosis and prognosis using svm based
classifiers. Applied Intelligence 30(1):24-36.
Nachtegael, M., M. Van-Der-Weken, D. Van-De-Ville, D. Kerre, W. Philips, and
I. Lemahieu. 2001. An overview of classical and fuzzy-classical filters for noise re-
duction. In In: 10th international ieee conference on fuzzy systems fuzz-ieee'2001,
3-6.
Nystrom, L., I. Andersson, N. Bjurstam, J. Frisell, B. Nordenskjold, and L. E. Rutqvist.
2002. Long-term effects of mammography screening: updated overview of the swedish
randomised trials. Lancet 359:909919.
Organization, World Health. 2005. Iinternational agency for research on cancer, bien-
nial report.
Pawlak, Z. 1982. Rough sets. Int.J. Computer and Information Sci. 11:341-356.
Peters, J.F., H. Liting, and S. Ramanna. 2001. Rough neural computing in signal
analysis. Computational Intelligence 17(3):493-513.
Peters, J.F., A. Skowron, H. Liting, and S. Ramanna. 2000. Towards rough neural
computing based on rough membership functions: Theory and application. In In:
Rsctc'2000- lnai-springer, 611-618.
Polkowski, L. 2002. Rough sets:mathematical foundations. In Rough sets:mathematical
foundations. Physica-Verlag.
Rajendra, Acharya U, E. Y. K. Ng, amd J. Yang Y. H. Chang, and G. J. L. Kaw.
2008. Computer-based identification of breast cancer using digitized mammograms.
J Med Syst 32:499507.
Rosenfeld, A. 1983. On connectivity properties of grayscale pictures. Pattern Recog-
nition 16:47-50.
Sandeep, Chandana, and V. Mayorga Rene. 2006. Rough adaptive neuro-fuzzy infer-
ence system. International Journal of Computational Intelligence 3(4):289-295.
Setiono, R. 2000. Generating concise and accurate classification rules for breast cancer
diagnosis. Artificial Intelligence in Medicine 18(3):205-219.
Slezak, D. 2000. Various approaches to reasoning with frequency-based decision
reducts: a survey. In Rough sets in soft computing and knowledge discovery: New
developments, ed. T.Y. Lin L. Polkowski, S. Tsumoto. Physica-Verlag.
Starzyk, J.A., N. Dale, and K. Sturtz. 1981. A mathematical foundation for improved
reduct generation in information systems. Knowledge and Information Systems Jour-
nal 2(2):131-147.
Search WWH ::




Custom Search