Biomedical Engineering Reference
In-Depth Information
39. Berg, J., Willmann, S., Lassig, M.: Adaptive evolution of transcription factor binding sites.
BMC Evol. Biol. 4 , 42 (2004)
40. Sella, G., Hirsh, A.E.: The application of statistical physics to evolutionary biology. Proc. Natl.
Acad. Sci. USA 102 , 9541-9546 (2005)
41. Durrett, R.: Probability Models for DNA Sequence Evolution. Springer, Heidelberg (2002)
42. Barton, N.H., Coe, J.B.: On the application of statistical physics to evolutionary biology
J. Theor. Biol. 259 , 317-324 (2009)
43. Eigen, M.: Selforganization of matter and the evolution of biological macromolecules.
Naturwissenschaften 58 , 465-523 (1971)
44. Leuthausser, I.: Statistical mechanics of Eigen's evolution model. J. Stat. Phys. 48 , 343-336
(1987)
45. Tarazona, P.: Error thresholds for molecular quasispecies as phase transitions: from simple
landscapes to spin-glass models. Phys. Rev. A 45 , 6038-6050 (1992)
46. Bromham, L., Penny, D.: The modern molecular clock. Nature Rev. Genet. 4 , 216-224 (2003)
47. Kimura, M.: Evolutionary rate at the molecular level. Nature 217 , 624-626 (1968)
48. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press,
Cambridge (1983)
49. Gillespie, J.H.: The Causes of Molecular Evolution. Oxford University Press, New York (1991)
50. Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M.: Connectivity of neutral networks,
overdispersion and structural conservation in protein evolution. J. Mol. Evol. 56 , 243-254
(2003)
51. van Nimwegen, E., Crutchfield, J.P., Huynen, M.: Neutral evolution of mutational robustness.
Proc. Natl. Acad. Sci. USA 96 , 9716-9720 (1999)
52. Drummond, D.A., Wilke, C.O.: Mistranslation-induced protein misfolding as a dominant
constraint on coding-sequence evolution. Cell 134 , 341-352 (2008)
53. Freeland, S.J., Knight, R.D., Landweber, L.F., Hurst, L.D.: Early fixation of an optimal genetic
code. Mol. Biol. Evol. 17 , 511-518 (2000)
54. Sammet, S.G., Bastolla, U., Porto, M.: Comparison of translation loads for standard and
alternative genetic codes. BMC Evol. Biol. 10 , 178 (2010)
55. Muto, A., Osawa, S.: The guanine and cytosine content of genomic DNA and bacterial
evolution. Proc. Natl. Acad. Sci. USA 84 , 166-169 (1987)
56. Chen, S.L., Lee, W., Hottes, A.K., Shapiro, L., McAdams, H.: Codon usage between genomes
is constrained by genome-wide mutational processes. Proc. Natl. Acad. Sci. USA 101 ,
3480-3485 (2004)
57. Sueoka, N.: Correlation between base composition of the deoxyribonucleic acid and amino
acid composition of proteins. Proc. Natl. Acad. Sci. USA 47 , 469-478 (1961)
58. Bernardi, G., Bernardi, G.: Codon usage and genome composition. J. Mol. Evol. 24 , 1-11
(1985)
59. D'Onofrio, G., Jabbari, K., Musto, H., Bernardi, G.: The correlation of protein hydropathy with
the base composition of coding sequences. Gene 238 , 3-14 (1999)
60. Kauzmann, W.: Some factors in the interpretation of protein denaturation. Adv. Protein
Chem. 14 , 1-63 (1959)
61. Uversky, V.N.: Protein folding revisited. A polypeptide chain at the folding - misfolding -
nonfolding cross-roads: which way to go? Cell. Mol. Life Sci. 60 , 1852-1871 (2003)
62. Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M.: A protein evolution model with
independent sites that reproduces site-specific amino acid distributions from the Protein Data
Bank. BMC Evol. Biol. 6 , 43 (2006)
63. Silva, F., Latorre, A., Gomez-Valero, L., Moya, A.: Genomic changes in bacteria: from free-
living to endosymbiotic life. In: Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M.
(eds.) (2007) Structural Approaches to Sequence Evolution, pp. 149-168. Springer, Heidelberg
(2008)
64. Li, H., Tang, W.: Nature of driving force for protein folding: a result from analyzing the
statistical potentials. Phys. Rev. Lett. 79 , 765-768 (1997)
Search WWH ::




Custom Search