Biomedical Engineering Reference
In-Depth Information
31. Huynen, M.A., van Nimwegen, E.: The frequency distribution of gene family sizes in complete
genomes. Mol. Biol. Evol. 15 (5), 583-589 (1998)
32. Kuznetsov, V.: Statistics of the number of transcripts and protein sequences encoded in the
genome. In: Zhang W, Shmulevich I (eds.) Computational and Statistical Approaches to
Genomics, pp. 125-171. Kluwer, Boston (2002)
33. Qian, J., Luscombe, N.M., Gerstein, M.: Protein family and fold occurrence in genomes:
power-law behaviour and evolutionary model. J. Mol. Biol. 313 (4), 673-681 (2001)
34. Taylor, W.R., Chelliah, V., Hollup, S.M., MacDonald, J.T., Jonassen, I.: Probing the “dark
matter” of protein fold space. Structure. 17 (9), 1244-1252 (2009)
35. Zhang, C., DeLisi, C.: Estimating the number of protein folds. J. Mol. Biol. 284 , 1301-
1305 (1998)
36. Goldstein, R.A.: The structure of protein evolution and the evolution of protein structure. Curr.
Opin. Struct. Biol. 18 (2), 170-177 (2008)
37. Bornberg-Bauer, E., Huylmans, A.K., Sikosek T How do new proteins arise? Curr. Opin.
Struct. Biol. 20 (3), 390-396 (2010)
38. Chothia, C., Lesk, A.M.: The relationship between the divergence of sequence and structure in
proteins. EMBO J. 5 , 823-826 (1986)
39. Lesk, A.M., Chothia, C.H.: The response of protein structure to amino-acid sequence changes.
Philos. Trans. R. Soc. London Ser. B. 317 , 345-356 (1986)
40. Govindarajan, S., Goldstein, R.A.: Evolution of model proteins on a foldability landscape.
Proteins. 29 , 461-466 (1997).
41. Bornberg-Bauer, E., Chan, H.S.: Modeling evolutionary landscapes: mutational stability,
topology, and superfunnels in sequence space. Proc. Natl. Acad. Sci. USA. 96 , 10689-
10694 (1999)
42. Bonberg-Bauer, E.: Randomness, structural uniqueness, modularity, and neutral evolution in
sequence space of model proteins. Z. Phys. Chem. 216 , 139-154 (2002)
43. Fontana, W., Stadler, P.F., Bornberg-Bauer, E.G., Griesmacher, T., Hofacker, I.L., Tacker, M.,
Tarazona, P., Weinberger, E.D., Schuster, P.: RNA folding and combinatory landscapes. Phys.
Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics. 47 (3), 2083-2099 (1993)
44. Schuster, P.: Genotypes with phenotypes: adventures in an RNA toy world. Biophys. Chem.
66 (2-3), 75-110 (1997)
45. Schuster, P.: Evolution in silico and in vitro: the RNA model. Biol. Chem. 382 (9), 1301-
1314 (2001)
46. Babajide, A., Farber, R., Hofacker, I.L., Inman, J., Lapedes, A.S., Stadler, P.F.: Exploring
protein sequence space using knowledge-based potentials. J. Theor. Biol. 212 (1), 35-46 (2001)
47. Bornberg-Bauer, E.: How are model protein structures distributed in sequence space? Biophys.
J. 73 (5), 2393-2403 (1997)
48. Beadle, B.M., Shoichet, B.K.: Structural bases of stability-function tradeoffs in enzymes. J.
Mol. Biol. 321 (2), 285-296 (2002)
49. Daniel, R.M., Dunn, R.V., Finney, J.L., Smith, J.C.: The role of dynamics in enzyme activity.
Annu. Rev. Biophys. Biomol. Struct. 32 , 69-92 (2003)
50. DePristo, M.A., Weinreich, D.M., Hartl, D.L.: Missense meanderings in sequence space: a
biophysical view of protein evolution. Nat. Rev. Gen. 6 , 678-687 (2005)
51. Fields, P.A.: Review: Protein function at thermal extremes: balancing stability and flexibility.
Comp. Biochem. Physiol. Mol. Integr. Physiol. 129 (2-3), 417-431 (2001)
52. Schreiber, C., Buckle, A.M., Fersht, A.R.: Stability and function—2 constraints in the evolution
of barstar and other proteins. Structure. 2 (10), 945-951 (1994)
53. Somero, G.N.: Proteins and temperature. Annu. Rev. Physiol. 57 , 43-68 (1995)
54. Zavodszky, P., Kardos, J., Svingor, A., Petsko, G.A.: Adjustment of conformational flexibility
is a key event in the thermal adaptation of proteins. Proc. Natl. Acad. Sci. U S A. 95 (13),
7406-7411 (1998)
55. Taverna, D.M., Goldstein, R.A.: Why are proteins marginally stable? Proteins. 46 (1), 105-
109 (2002)
Search WWH ::




Custom Search