Biomedical Engineering Reference
In-Depth Information
53. Jeong, J., Goldenfeld, N., Dantzig, J.: Phase field model for three-dimensional dendritic
growth with fluid flow. Phys. Rev. E 64 , 041602 (2001)
54. Jiang, X., Takayama, S., Qian, X., Ostuni, E., Wu, H., Bowden, N., LeDuc, P., Ingber, D.E.,
Whitesides, G.M.: Controlling mammalian cell spreading and cytoskeletal arrangement with
conveniently fabricated continuous wavy features on poly(dimethylsiloxane). Langmuir 18 ,
3273-3280 (2002)
55. Joanny, J.F., Julicher, F., Kruse, K., Prost, J.: Hydrodynamic theory for multi-component
active polar gels. New J. Phys. 9 , 1-17 (2007)
56. Joanny, J.F., Julicher, F., Prost, J.: Motion of an adhesive gel in a swelling gradient: a
mechanicsm for cell locomotion. Phys. Rev. Lett. 25 (6), 168102 (2003)
57. Julicher, F., Kruse, K., Prost, J., Joanny, J.-F.: Active behavior of the cytoskeleton. Phys. Rep.
449 , 3-28 (2007)
58. Kapustina, M., Weinreb, G., Costigliola, N., Rajfur, Z., Jacobson, K., Elston, T.: Mechanical
and biochemical modeling of cortical oscillations in spreading cells. Biophys. J. 94 (12),
4605-4620 (2008)
59. Karma, A., Rappel, W.: Phase-field model of dendritic sidebranching with thermal noise.
Phys. Rev. E 60 , 3614-3625 (1999)
60. Kataoka, A., Tanner, B.C.W., Macpherson, J.M., Xu, X., Wang, Q., Reginier, M., Daniel, T.,
Chase, P.B.: Spatially explicit, nanomechanical models of the muscle half sarcomere:
implications for mechanical tuning in atrophy and fatigue. Acta Astronautica 60 (2), 111-118
(2007)
61. Kiehart, D.P., Bloom, K.: Cell structure and dynamics. Curr. Opin. Cell Biol. 19 , 1-4 (2004)
62. Kim, J., Sun, S.: Continuum modeling of forces in growing viscoelastic cytosketal networks.
J. Theor. Biol. 256 , 596-606 (2009)
63. Kruse, K., Joanny, J.F., Julicher, F., Prost, J., Seimoto, K.: Asters, vortices, and rotating spirals
in active gels of polar filaments: Phys. Rev. Lett. 92 (7), 078101 (2004)
64. Kruse, K., Joanny, J.F., Julicher, F., Prost, J., Sekimota, K.: Generic theory of active polar
gels: a paradigm for cytoskeletal dynamics. Eur. Phys. J. E 16 , 5-16 (2005)
65. Kruse, K., Julicher, F.: Actively contracting bundles of polar filaments. Phys. Rev. Lett. 85 (8),
1778-1781 (2000)
66. Li, J., Forest, M.G., Wang, Q., Zhou, R.: A kinetic theory and benchmark predictions for
polymer dispersed, semi-flexible nanorods and nanoplatelets. Physica D 240 , 114-130 (2011)
67. Li, Y., Hu, S., Liu, Z., Chen, L.Q.: Phase-field model of domain structures in ferroelectric thin
films. Appl. Phys. Lett. 78 , 3878-3880 (2001)
68. Lindley, B., Wang, Q., Zhang, T.: Multicomponent models for biofilm flows. Discrete
Continuous Dyn. Syst. Ser. B 15 (2), 417-456 (2011)
69. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its
approximation by a fourier-spectral method. Physica D 179 , 211-228 (2003)
70. Liu, C., Walkington, N.J.: An Eulerian description of fluids containing visco-hyperelastic
particles. Arch. Rat. Mech. Ana. 159 , 229-252 (2001)
71. Liverpool, T.B., Marchetti, M.C.: Bridging the microscopic and the hydrodynamic in active
filament solutions. Europhys. Lett. 69 , 846 (2005)
72. Liverpool, T.B., Marchetti, M.C.: Hydrodynamics and rheology of active polar filaments. In:
Lenz, P. (ed.) Cell Motility. Springer, NY (2007)
73. Loesberg, W.A., te Riet, J., van Delft, F.C.M.J.M., Schoen, P., Figdor, C.G., Speller, S., van
Loon, J.J.W.A., Walboomers, X.F., Jansen, J.A.: The threshold at which substrate nanogroove
dimensions
may
influence
fibroblast
alignment
and
adhesion.
Biomaterials
28 (27),
3944-3951 (2007)
74. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological
transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 , 2617-2654 (1998)
75. Lu, W., Suo, Z.: Dynamics of nanoscale pattern formation of an epitaxial monolayer. J. Mech.
Phys. Solids 49 , 1937-1950 (2001)
Search WWH ::




Custom Search