Information Technology Reference
In-Depth Information
and get Frank t-conorm and t-norm (Beliakov et al. 2007):
1
1
x
1
y
+
1
)(γ
1
)
s F (
˙
x
,
y
) =
1
log
(
1
, +∞ )
(1.197)
γ
γ
1
1
x
y
+
1
)(γ
1
)
τ F (
x
,
y
) =
log
(
1
, +∞ )
(1.198)
γ
γ
1
Especially, if
γ
1, then
log γ
log 1
t
1
lim
γ
1 g(
t
) =
lim
γ
=
lim
γ
=−
log t
(1.199)
t
t
1
γ
1
γ
1
1
1
which indicates that lim
γ
1 ˙
s F (
x
,
y
)
s A (
x
,
y
)
and lim
γ
1 τ F (
x
,
y
) = τ A (
x
,
y
)
.
Considering the relationships among all the three components:
π α i
=
1
μ α i
v
i ,
α
we usually denote an IFV
α = α ,
v
α α )
only by its two former components
α = α ,
for brevity. Based on Archimedean t-norm and t-conorm (Klir and
Yuan 1995), Beliakov et al. (2011) defined the sum operation on two IFVs
v α )
α i
=
α i ,
v α i )(
i
=
1
,
2
)
:
α 1 α 2 = ˙
v α 2 )
s
α 1 α 2 ), τ (
v α 1 ,
(1.200)
which can be expressed by the following:
α 1 α 2 = ˙
v α 2 )
α 1 α 2 ), τ (
v α 1 ,
s
h 1
α 2 )), g 1
=
(
h
α 1 ) +
h
(g(
v α 1 ) + g(
v α 2 ))
(1.201)
Beliakov et al. (2011) also mentioned that for an IFV
α = α ,
v α )
,let
λα =
λα ,
v λα )
, then g(
v λα ) = λg(
v α )
and h
λα ) = λ
h
α )
.
be three IFVs, then with the
above analysis, the operations about these IFVs based on Archimedean t-norm and
Archimedean t-conorm (Klir and Yuan 1995) can be also expressed as below:
Let
α i
= α i ,
v α i )(
i
=
1
,
2
)
and
α = α ,
v α )
Definition 1.21 (Xia et al. 2012b)
1 α 2 = ˙
α 2 )
(
1
s
α 1 α 2 ), τ (
v
α 1 ,
v
h 1
α 2 )), g 1
=
(
h
α 1 ) +
h
(g(
v
α 1 ) + g(
v
α 2 ))
.
1 α 2 = τ(μ α 1 α 2 ), ˙
α 2 )
(
2
s
(
v
α 1 ,
v
g 1
h 1
=
(g(μ α 1 ) + g(μ α 2 )),
(
h
(
v
α 1 ) +
h
(
v
α 2 ))
.
 
 
Search WWH ::




Custom Search