Information Technology Reference
In-Depth Information
To aggregate the intuitionistic fuzzy information, we further introduce the
following:
T be the weight vector
Definition 1.16 (Xia et al. 2012b) Let w
= (
w 1 ,
w 2 ,...,
w n )
n and i = 1 w i
of
α i
(
i
=
1
,
2
,...,
n
)
such that w i
>
0, i
=
1
,
2
,...,
=
1. If
GIFWBGM p , q , r
1 2 ,...,α n )
α k w i w j w k
p
1
n
=
α i
q
α j
r
(1.181)
p
+
q
+
r
i
,
j
,
k
=
1
then GIFWBGM p , q , r is called a generalized intuitionistic fuzzy weighted Bonferroni
geometric mean (GIFWBGM).
Based on the operational laws of the IFVs, and similar to Theorem 1.16, we can
derive the following theorem:
Theorem 1.22 (Xia et al. 2012b) The aggregated value by using the GIFWBGM is
also an IFV, and
GIFWBGM p , q , r
1 2 ,...,α n )
r w i w j w k
1
p + q + r
n
1
1
p
q
=
1
(
1
μ α i )
(
1
μ α j )
(
1
μ α k )
,
i
,
j
,
k
=
1
p + q + r
k w i w j w k
1
n
1
1
v p
α
i v q
j v r
(1.182)
α
α
i
,
j
,
k
=
1
Now let us discuss some desirable properties of the GIFGBM (Xia et al. 2012b):
α i
(
=
,
,...,
)
α i
= α = α ,
v α α )
Theorem 1.23 If all
i
1
2
n
are equal, i.e.,
,
for all i , then
GIFWBGM p , q
1 2 ,...,α n ) = α
(1.183)
Theorem 1.24 Let
β i
= β i ,
v
β i β i )(
i
=
1
,
2
,...,
n
)
be a collection of IFVs,
if
μ α i
μ β i and v
v
β i , for all i , then
α i
GIFWBGM p , q
GIFWBGM p , q
1 2 ,...,α n )
1 2 ,...,β n )
(1.184)
Theorem 1.25 Let
( α 1 , α 2 ,..., α n )
be any permutation of
1 2 ,...,α n )
, then
GIFWBGM p , q
GIFWBGM p , q
1 2 ,...,α n ) =
( α 1 , α 2 ,..., α n )
(1.185)
 
Search WWH ::




Custom Search