Information Technology Reference
In-Depth Information
r w i w j w k
1
p + q + r
n
1
1
p
q
=
1
(
1
v
)
(
1
v
)
(
1
v
)
β
β
β
i
j
k
i
,
j
,
k
=
1
(1.173)
and thus,
1
α k w i w j w k
1
p + q + r
n
1 μ
p
α
q
α
r
h α =
μ
μ
i
j
i
,
j
,
k
=
1
r
1
r w i w j w k
1
n
1
p
+
q
+
p
q
+
1
(
1
v
α i )
(
1
v
α j )
(
1
v
α k )
i
,
j
,
k
=
1
k w i w j w k
1
n
1
p
+
q
+
r
p
β i μ
q
β j μ
r
β
1
=
μ
i
,
j
,
k
=
1
p + q + r
1
r w i w j w k
1
n
1 ( 1 v
p
q
+
1
β i )
( 1 v
β j )
( 1 v
β k )
i
,
j
,
k
=
1
(1.174)
= h
β
Then by Xu and Yager (2006)'s ranking method, we get
GIFWBM p , q , r
GIFWBM p , q , r
1 2 ,...,α n ) =
1 2 ,...,β n )
(1.175)
which completes the proof.
Theorem 1.19 Let
( α 1 , α 2 ,..., α n )
be any permutation of
1 2 ,...,α n )
, then
GIFWBM p , q , r
GIFWBM p , q , r
1 2 ,...,α n ) =
( α 1 , α 2 ,..., α n )
(1.176)
α and
α + be given by Eqs. ( 1.35 ) and ( 1.36 ), then
Theorem 1.20 Let
α
GIFWBM p , q
1 2 ,...,α n ) α +
(1.177)
1.5.3 Generalized Intuitionistic Fuzzy Weighted Bonferroni
Geometric Mean
Apparently, the aggregation operators proposed in Sects. 1.5.1 and 1.5.2 are all based
on the arithmetic average, which is one of the basic aggregation techniques and
focuses on the group opinion, and another fundamental one is the geometric mean,
 
 
Search WWH ::




Custom Search