Information Technology Reference
In-Depth Information
1
p + q
1
q
n
1
n ( n 1 )
p
1
1
(
1
μ α i )
(
1
μ α j )
i
,
j
=
1
i
=
j
1
p + q
1
q
n
1
n ( n 1 )
p
1
1
(
1
μ β i )
(
1
μ β j )
i , j = 1
i
=
j
1
p + q
1 v p
α j
n
1
α i v q
1
n
(
n
1
)
i , j = 1
i = j
1
p + q
1
β j
n
1
v p
β i v q
n
(
n
1
)
1
i
,
j
=
1
i = j
1
p + q
n
1
q
1
n ( n 1 )
p
1
1
(
1
μ α i )
(
1
μ α j )
i , j = 1
i
=
j
1
p + q
1
α j
n
1
n ( n
1
)
v p
α i v q
1
i
,
j
=
1
i = j
1
p + q
n
1
q
1
n ( n 1 )
p
1
1
(
1
μ β i )
(
1
μ β j )
i , j = 1
i
=
j
1
p + q
1
β j
n
1
v p
β i v q
n
(
n
1
)
1
(1.135)
i
,
j
=
1
i
=
j
which completes the proof.
α and
α + be given by Eqs. ( 1.35 ) and ( 1.36 ), then
(4) (Boundedness) Let
α
IFGBM p , q
1 2 ,...,α n ) α +
(1.136)
which can be obtained easily by the monotonicity.
If the values of the parameters p and q change in the IFBGM, then some special
cases can be obtained as follows (Xia et al. 2012a):
Case 1 If q
0, then by Eq. ( 1.119 ), we have
 
Search WWH ::




Custom Search