Information Technology Reference
In-Depth Information
α j
(
=
,
...,
)
Theorem 1.12 (Boundedness) Let
j
1
2
n
be a collection of IVIFVs,
then
α
( α 1 , α 2 ,..., α n ) α +
IVIFPWA
(1.90)
α
( α 1 , α 2 ,..., α n ) α +
IVIFPWG
(1.91)
α
( α 1 , α 2 ,..., α n ) α +
IVIFPOWA
(1.92)
α
( α 1 , α 2 ,..., α n ) α +
IVIFPOWG
(1.93)
where
α =
mi j { μ α j } ,
mi j { μ α j }] , [
v α j } ,
v α j }] , [
mi j { μ α j }−
v α j }] ,
[
ma j {
ma j {
ma j {
1
mi j { μ α j }−
v α j }]
[
1
ma j {
(1.94)
α + =
ma j { μ α j } ,
ma j { μ α j }] , [
v α j } ,
v α j }] ,
[
mi j {
mi j {
ma j { μ α j }−
v α j }] , [
ma j { μ α j }−
v α j }]
[
1
mi j {
1
mi j {
(1.95)
1.3.3 Approaches to Multi-Attribute Group Decision Making with
Interval-Valued Intuitionistic Fuzzy Information
In the following, we investigate the application of the interval-valued intuitionistic
fuzzy power aggregation operators to multi-attribute group decision making with
interval-valued intuitionistic fuzzy information:
For a multi-attribute group decision making problem with interval-valued intu-
itionistic fuzzy information, suppose that Y , G and E are defined as in Sect. 1.2.4 .Let
B ( k ) = ( b ( k )
ij
) m × n be an interval-valued intuitionistic fuzzy decision matrix, where
b ( k )
ij
= ( t ( k )
ij
, f ( k )
ij
, π ( k )
ij
)
is an attribute value provided by the expert e k , denoted by
an IVIFV, where t ( k )
ij
t ( k )
ij
t + ( k )
ij
=[
,
]
indicates the degree range that the alternative
f ( k )
ij
f ( k )
ij
f + ( k )
ij
indicates the degree range
that the alternative y j does not satisfy the attribute G i , and
y j satisfies the attribute G i , while
=[
,
]
π ( k )
ij
=[ π ( k )
ij
+ ( k )
ij ]
indicates the degree range of uncertainty of the alternative y j to the attribute G i ,
such that
 
Search WWH ::




Custom Search