Information Technology Reference
In-Depth Information
Now we extend Lukasiewicz implication operator to intuitionistic fuzzy environ-
ment. For any two IFVs
α = α ,
v α )
β = β ,
v β )
and
, if we only consider the
membership degrees
cannot reflect
the superiority of IFVs, so we should consider the non-memberships v
μ α
and
μ β
of
α
and
β
, then min
{
1
μ α + μ β ,
1
}
as
well. Then based on the components of IFVs and the form of Lukasiewicz implica-
tion operator, Wang et al. (2012) defined an intuitionistic fuzzy Lukasiewicz impli-
cation operator
and v
α
β
ϕ(α, β)
, whose membership degree and non-membership degree are
expressed as:
min
{
1
,
min
{
1
μ α + μ β ,
1
v
β +
v
α }} =
min
{
1
,
1
μ α + μ β ,
1
v
β +
v
α }
and
max
{
0
,
min
{
1
(
1
μ α + μ β ),
1
(
1
v
β +
v
α ) }} =
max
{
0
,
min
{ μ α μ β ,
v
β
v
α }}
respectively, i.e.,
ϕ(α, β) = min
v α }}
(2.199)
{
1
,
1
μ α + μ β ,
1
v β +
v α } ,
max
{
0
,
min
{ μ α μ β ,
v β
Clearly, we need to prove that the value of
ϕ(α, β)
should satisfy all the conditions
of an IFV. In fact, from Eq. ( 2.199 ), we have
{
,
μ α + μ β ,
v β +
v α }≥
,
{
,
{ μ α μ β ,
v β
v α }} ≥
min
1
1
1
0
max
0
min
0 (2.200)
and since
max
{
0
,
min
{ μ α μ β ,
v
β
v
α }} =
1
min
{
1
,
max
{
1
μ α + μ β ,
1
v
β +
α }}
(2.201)
v
min
{
1
,
max
{
1
μ α + μ β ,
1
v
β +
v
α }} ≥
min
{
1
,
1
μ α + μ β ,
1
v
β +
v
α }
(2.202)
then
1
min
{
1
,
max
{
1
μ α + μ β ,
1
v
β +
v
α }} +
min
{
1
,
1
μ α + μ β ,
1
v
β +
v
α }≤
1
which indicates that the value of
ϕ(α, β)
derived by Eq. ( 2.201 )isanIFV.
Example 2.14 (Wang et al. 2012) Let
α = (
0
,
1
)
and
β = (
1
,
0
)
, then byEq. ( 2.198 ),
we have
ϕ(α, α) = (
min
{
1
,
1
0
+
0
,
1
1
+
1
} ,
max
{
0
,
min
{
0
0
,
1
1
}} ) = (
1
,
0
)
ϕ(β, β) = (
{
,
+
,
+
} ,
{
,
{
,
}} ) = (
,
)
min
1
1
1
1
1
0
0
max
0
min
1
1
0
0
1
0
ϕ(α, β) = (
min
{
1
,
1
0
+
1
,
1
0
+
1
} ,
max
{
0
,
min
{
0
1
,
0
1
}} ) = (
1
,
0
)
 
Search WWH ::




Custom Search