Information Technology Reference
In-Depth Information
an intuitionistic fuzzy equivalent association matrix by transitive closure technique,
which needs lots of computational effort. In Zhao et al. (2012b)'s method, we get
the
-cutting matrix directly from the intuitionistic fuzzy association matrix.
Furthermore, Let m and n represent the amount of alternatives and attributes
respectively. Then the computational complexity of our method is O
λ
nm 2
(
)
,Xu
nm 2
et al. (2008)'s method is O
represents the
transfer times until we get the equivalent matrix, and Pelekis et al. (2008)'s method
is O
((
1
+
k
)
)
where k (usually, k
2
)
nm 2
(
+
jcm
)
where c is the number of the clusters, j is the times of judgment if
U j + 1
U j F
is valid.
In summary, Xu et al. (2008)'s method and Pelekis et al. (2008)'s method have
relatively high computational complexity, which indeed motivates the intuitionistic
fuzzy Boole clustering method given by Zhao et al. (2012b).
Furthermore, from Examples 2.8 and 2.9, we can see that the clustering results
have much to do with the threshold
λ
, the smaller the confidence level
λ
is, the more
detailed the clustering will be.
Either in Example 2.8 or in Example 2.9, we all use the association coefficient
Eq. ( 2.159 ) but not Eq. ( 2.157 ), the reason is that Eq. ( 2.157 ) cannot guarantee the
necessity in the condition (2) of Definition 2.31 and omits the hesitation degree,
which may lead to the incorrect results. The following example shows these ideas:
Example 2.10 (Zhao et al. 2012b) Suppose that the military experts evaluate the
performance of another group of combat aircrafts y i (
i
=
1
,
2
,...,
9
)
according to
the attributes G j (
j
=
1
,
2
,...,
7
)
, and give the data as:
y 1 ={ G 1 , 0 . 5 , 0 . 3 , G 2 , 0 . 6 , 0 . 3 , G 3 , 0 . 4 , 0 . 3 ,
G 4 , 0 . 8 , 0 . 1 , G 5 , 0 . 7 , 0 . 2 , G 6 , 0 . 5 , 0 . 2 , G 7 , 0 . 4 , 0 . 3 }
y 2 ={ G 1 , 0 . 6 , 0 . 2 , G 2 , 0 . 5 , 0 . 3 , G 3 , 0 . 5 , 0 . 2 ,
G 4 , 0 . 6 , 0 . 2 , G 5 , 0 . 6 , 0 . 3 , G 6 , 0 . 6 , 0 . 3 , G 7 , 0 . 5 , 0 . 2 }
y 3 ={ G 1 , 0 . 7 , 0 . 1 , G 2 , 0 . 6 , 0 . 3 , G 3 , 0 . 7 , 0 . 2 ,
G 4 , 0 . 5 , 0 . 3 , G 5 , 0 . 5 , 0 . 2 , G 6 , 0 . 5 , 0 . 2 , G 7 , 0 . 6 , 0 . 3 }
y 4 ={ G 1 , 0 . 4 , 0 . 3 , G 2 , 0 . 7 , 0 . 2 , G 3 , 0 . 5 , 0 . 3 ,
G 4 , 0 . 6 , 0 . 2 , G 5 , 0 . 7 , 0 . 1 , G 6 , 0 . 4 , 0 . 3 , G 7 , 0 . 7 , 0 . 2 }
y 5 ={ G 1 , 0 . 6 , 0 . 2 , G 2 , 0 . 6 , 0 . 3 , G 3 , 0 . 6 , 0 . 2 ,
G 4 , 0 . 5 , 0 . 3 , G 5 , 0 . 8 , 0 . 1 , G 6 , 0 . 6 , 0 . 1 , G 7 , 0 . 6 , 0 . 1 }
y 6 ={ G 1 , 0 . 8 , 0 . 1 , G 2 , 0 . 5 , 0 . 2 , G 3 , 0 . 7 , 0 . 1 ,
G 4 , 0 . 7 , 0 . 1 , G 5 , 0 . 7 , 0 . 2 , G 6 , 0 . 8 , 0 . 1 , G 7 , 0 . 7 , 0 . 2 }
y 7 ={ G 1 , 0 . 7 , 0 . 2 , G 2 , 0 . 6 , 0 . 3 , G 3 , 0 . 8 , 0 . 1 ,
G 4 , 0 . 8 , 0 . 1 , G 5 , 0 . 6 , 0 . 3 , G 6 , 0 . 5 , 0 . 4 , G 7 , 0 . 8 , 0 . 1 }
y 8 ={ G 1 ,
.
,
.
, G 2 ,
.
,
.
, G 3 ,
.
,
.
,
0
5
0
2
0
7
0
2
0
7
0
2
G 4 ,
0
.
6
,
0
.
2
, G 5 ,
0
.
5
,
0
.
3
, G 6 ,
0
.
7
,
0
.
1
, G 7 ,
0
.
6
,
0
.
2
}
y 9 ={
G 1 ,
0
.
6
,
0
.
2
,
G 2 ,
0
.
5
,
0
.
3
,
G 3 ,
0
.
6
,
0
.
3
,
G 4 ,
0
.
5
,
0
.
2
,
G 5 ,
0
.
8
,
0
.
1
,
G 6 ,
0
.
8
,
0
.
1
,
G 7 ,
0
.
5
,
0
.
2
}
Search WWH ::




Custom Search