Information Technology Reference
In-Depth Information
Fig. 2.2 Classification of the enterprises A j ( j = 1 , 2 , 3 , 4 )
μ R :
X
×
Y
→[
0
,
1
] ,
v R :
X
×
Y
→[
0
,
1
]
(2.114)
and
μ R (
,
) +
v R (
,
)
,
(
,
)
×
0
x
y
x
y
1
for any
x
y
X
Y
(2.115)
Definition 2.17 (Bustince 2000) Let R be an intuitionistic fuzzy relation. If
(1) ( Reflexivity ).
μ R (
x
,
x
) =
1
,
v R (
x
,
x
) =
0, for any x
X .
(2) ( Symmetry ).
μ R (
x
,
y
) = μ R (
y
,
x
),
v R (
x
,
y
) =
v R (
y
,
x
)
, for any
(
x
,
y
)
X
×
Y ,
then R is called an intuitionistic fuzzy similarity relation.
Definition 2.18 (Xu et al. 2011) Let
α = 1 2 ,...,α n )
be a vector. If all
α i
=
α i ,
v
)(
i
=
1
,
2
,...,
n
)
are IFVs, then we call
α
an intuitionistic fuzzy vector,
α
i
T as the transpose of
T
and denote
α
α
, where
α
is a n -dimensional column vector.
Definition 2.19 (Xu et al. 2011) Let
α, β
X 1 × n ,
where X 1 × n denotes the set of
intuitionistic fuzzy vectors. Then
α · β = (
max
{
min
{ μ α i β i }} ,
min
{
max
{
v α i ,
v β j }} )
n
n
= (
1 α i μ β i ),
1 (
v
α i
v
β j ))
(2.116)
i
=
i
=
is called the inner product of
α
and
β
, where
and
denote the max and min
operations respectively.
Definition 2.20 (Xu et al. 2011) Let
α, β
X 1 × n ,
if
α · β = (
0
,
1
)
or
(
0
,
0
)
. Then
we call that
α
is orthogonal to
β
.
 
Search WWH ::




Custom Search