Information Technology Reference
In-Depth Information
≤˙
c ij
,
,
=
,
,...,
(1) 0
1
i
j
1
2
m .
1 if and only if A i = A j .
(2)
c ij =
˙
(3)
c ij
˙
c ji ,
i
,
j
=
1
,
2
,...,
m .
Based on the association matrix of the IVIFSs, in what follows, we introduce an
algorithm for clustering IVIFSs (Xu et al. 2008):
Algorithm 2.3
Step
1 Let
X
={
x 1 ,
x 2 ,...,
x n }
be a discrete universe of discourse,
T
w
= (
w 1 ,
w 2 ,...,
w n )
the weight vector of the elements x i
(
i
=
1
,
2
,...,
n
)
,
n , and i = 1 w i =
1, and let A j (
with w i ∈[
0
,
1
]
, i
=
1
,
2
,...,
j
=
1
,
2
,...,
m
)
be
a collection of IVIFSs:
A j ={
x i , μ A j (
x i ), ˜
v
A j (
x i ) |
x i
X
}
(2.98)
where
x i ) =[ μ A j (
x i ), μ A j (
v A j (
v A j (
μ A j (
x i ) ]⊂[
,
] ,
v A j (
˜
x i ) =[
x i ),
x i ) ]⊂[
,
] ,
0
1
0
1
μ A j (
v A j (
x i ) +
x i )
1
,
x i
X
(2.99)
x i ) =[ π A j (
x i ), π A j (
] A j (
μ A j (
Additionally,
π A j (
x i ) ]⊂[
0
,
1
x i ) =
1
x i )
1
v A j (
x i ), π A j (
μ A j (
v A j (
.
Step 2 Utilize the interval-valued intuitionistic fuzzy association measures:
x i ) =
1
x i )
1
x i )
k = 1 w k
μ A i (
x k ) · μ A j (
x k ) + μ A i (
x k ) · μ A j (
x k )
v A i (
v A j (
v A i (
v A j (
+
x k ) ·
x k ) +
x k ) ·
x k )
+ π A i (
x k ) · π A j (
x k ) + π A i (
x k ) · π A j (
x k )
( A i , A j ) =
c
(2.100)
max k = 1 w k
2
2
v A i (
2
μ A i (
μ A i (
x k )
+
x k )
+
x k )
v A i (
2
2
2
π A i (
π A i (
+
x k )
+
x k )
+
x k )
,
k = 1 w k
2
2
v A j (
2
μ A j (
μ A j (
x k )
+
x k )
+
x k )
v A j (
2
2
2
π A j (
π A j (
+
x k )
+
x k )
+
x k )
to calculate the association coefficients of the IVIFSs A i and A j (
i
,
j
=
1
,
2
,...,
m
)
,
( A i , A j ),
C
and then construct an association
=
( ˙
c ij ) m × m , where
˙
c ij
c
i
,
j
m .
Step 3 If the association matrix
=
1
,
2
,...,
C
= ( ˙
c ij ) m × m is an equivalent association
C λ = ( λ c ij ) m × m of
C by using
λ
matrix, then we construct a
-cutting matrix
Search WWH ::




Custom Search