Information Technology Reference
In-Depth Information
(3) Since Z 1 is an intuitionistic fuzzy similarity matrix, then we have z ( 1 )
z ( 1 )
ki
=
.
ik
Thereby
n
z ( 1 )
jk
z ( 1 )
ki
z ji =
1 (
) = (
ma k {
{ μ z ( 1 )
jk
z ( 1 )
ki
} ,
mi k {
{
,
}} )
min
max
v z ( 1 )
jk
v z ( 1 )
ki
k
=
= (
ma k {
min
{ μ z ( 1 )
jk
z ( 1 )
ik
} ,
mi k {
max
{
v z ( 1 )
jk
,
v z ( 1 )
ik
}} )
= (
ma k {
min
{ μ z ( 1 )
ik
z ( 1 )
jk
} ,
mi k {
max
{
v z ( 1 )
ik
,
v z ( 1 )
jk
}} )
n
k = 1 (
z ( 1 )
ik
z ( 1 )
kj
=
)
=
z ij
(2.31)
z ( 1 )
ij
z ( 2 )
ij
Theorem 2.5 (Zhang et al. 2007) Let Z 1
= (
) n × n , Z 2
= (
) n × n and Z 3
=
z ( 3 )
(
ij ) n × n be three intuitionistic fuzzy similarity matrices. Then their composition
operation satisfies the associative law:
(
Z 1
Z 2 )
Z 3 =
Z 1 (
Z 2
Z 3 )
(2.32)
z it ) n × n . Then by Theorem
Proof Let
(
Z 1
Z 2 )
Z 3 = (
z it ) n × n and Z 1 (
Z 2
Z 3 ) = (
2.1, we have
n
n
n
n
z ( 1 )
ij
z ( 2 )
jk
z ( 3 )
kt
z ( 1 )
ij
z ( 2 )
jk
z ( 3 )
kt
z it =
j = 1 (
)
)
=
j = 1 ((
)
)
k
=
1
k
=
1
n
k = 1
n
n
n
k = 1 (
z ( 1 )
ij
z ( 2 )
jk
z ( 3 )
kt
z ( 1 )
ij
z ( 2 )
jk
z ( 3 )
kt
=
1 (
(
)) =
(
))
j
=
j
=
1
z ( 1 )
ij
n
n
z ( 2 )
jk
z ( 3 )
kt
=
1 (
)
j
=
1
k
=
z it ,
=
i
,
t
=
1
,
2
,...,
n
Hence, Eq. ( 2.32 ) holds, which completes the proof.
Corollary 2.2 (Zhang et al. 2007) Let Z be an intuitionistic fuzzy similarity matrix.
Then for any positive integers m 1 and m 2 ,wehave
Z m 1 + m 2
Z m 1
Z m 2
=
where Z m 1 and Z m 2 are the m 1 and m 2 compositions of Z , respectively. Furthermore,
Z m 1 , Z m 2 and their composition matrix Z m 1 + m 2 are the intuitionistic fuzzy similarity
matrix.
Definition 2.5 (Zhang et al. 2007) If the intuitionistic fuzzy matrix Z
= (
z ij ) n × n
satisfies the following condition:
(1) Reflexivity: z ii = (
1
,
0
)
,
i
=
1
,
2
,...,
n .
(2) Symmetry: z ij =
μ z ij = μ z ji , v z ij =
,
=
,
,...,
z ji , i.e.,
v z ji ,
i
j
1
2
n .
 
Search WWH ::




Custom Search