Information Technology Reference
In-Depth Information
x i ) | λ + β 2 |
mi i { β 1 | μ A 1 (
x i ) μ A 2 (
v A 1 (
x i )
x i ) | λ + β 3 | π A 1 (
x i ) | λ }
v A 2 (
x i ) π A 2 (
1
(2.6)
There must exist a positive integer s such that
x i ) | λ + β 2 |
x i ) | λ + β 3 | π A 1 (
x i ) | λ }
mi i { β 1 | μ A 1 (
x i ) μ A 2 (
v A 1 (
x i )
v A 2 (
x i ) π A 2 (
x s ) | λ + β 2 |
x s ) | λ + β 3 | π A 1 (
= β 1 | μ A 1 (
x s ) μ A 2 (
v A 1 (
x s )
v A 2 (
x s )
x s ) | λ }
π A 2 (
1
(2.7)
As a result, when w s =
1 and w i =
0, i
=
s , the equality holds. Let
x i ) | λ + β 2 |
x i ) | λ
d
(
A 1 ,
A 2 ) =
mi i { β 1 | μ A 1 (
x i ) μ A 2 (
v A 1 (
x i )
v A 2 (
x i ) | λ }
+ β 3 | π A 1 (
x i ) π A 2 (
1
(2.8)
d (
x i ) | λ + β 2 |
x i ) | λ
A 1 ,
A 2 ) =
ma i { β 1 | μ A 1 (
x i ) μ A 2 (
v A 1 (
x i )
v A 2 (
x i ) | λ }
+ β 3 | π A 1 (
x i ) π A 2 (
1
(2.9)
Thus
λ d (
λ d (
A 2 ) ϑ (
1
A 1 ,
A 1 ,
A 2 )
1
A 1 ,
A 2 ), λ
1
(2.10)
Based on Eqs. ( 2.8 ) and ( 2.9 ), Zhang et al. (2007) gave a formula for calculating
the similarity degree between two IFSs:
Theorem 2.2 (Zhang et al. 2007) Let A 1 and A 2 be two IFSs. Then
1
λ d (
λ d (
ϑ(
A 1 ,
A 2 ) =
A 1 ,
A 2 ),
A 1 ,
A 2 )
1
(2.11)
is called the similarity degree between A 1 and A 2 .
ϑ(
Proof
(1) We first prove that
A 1 ,
A 2 )
is an IFV. Since
x i ) | λ + β 2 |
x i ) | λ + β 3 | π A 1 (
x i ) | λ
β 1 | μ A 1 (
x i ) μ A 2 (
v A 1 (
x i )
v A 2 (
x i ) π A 2 (
0
x i ) | λ , |
x i ) | λ ,
1 + β 2 + β 3 )
max
{| μ A 1 (
x i ) μ A 2 (
v A 1 (
x i )
v A 2 (
x i ) | λ }
| π A 1 (
x i ) π A 2 (
x i ) | λ , |
x i ) | λ , | π A 1 (
x i ) | λ }≤
=
{| μ A 1 (
x i ) μ A 2 (
v A 1 (
x i )
v A 2 (
x i ) π A 2 (
,
λ
max
1
1
then
λ d (
λ d
0
1
A 1 ,
A 2 )
1
,
0
(
A 1 ,
A 2 )
1
1
(2.12)
Search WWH ::




Custom Search