Information Technology Reference
In-Depth Information
(3) G κ α α ( α ) = ( κ α μ α α v α )
.
H κ α α (α) = α μ α ,
v α + λ α π α )
(4)
.
H κ α α (α) = α μ α ,
(5)
v α + λ α (
1
κ α μ α
v α ))
.
(6)
J
κ α α (α) = α + κ α π α α
v
α )
.
J κ α α (α) = α + κ α (
(7)
1
μ α λ α
v
α ) ,λ α
v
α )
.
(8)
P
κ α α (α) = (
max
α α ) ,
min
α ,
v
α ))
, where
κ α + λ α
1.
(9)
Q
κ α α (α) = (
min
α α ) ,
max
α ,
v
α ))
, where
κ α + λ α
1.
Based on Definition 1.27, let
H , 0
F 0
κ
D 0
κ
G 0
κ
H 0
κ
(
A
) =
(
A
) =
(
A
) =
(
A
) =
κ x x (
A
)
x
x
x
x
x
x
x
x
J , 0
J 0
P 0
Q 0
=
κ x x (
A
) =
κ x x (
A
) =
κ x x (
A
) =
κ x x (
A
) =
A
(1.303)
then we have the following theorem:
Theorem 1.43 (Xia and Xu 2010) Let
α = α ,
v α )
be an IFV, and n a positive
integer, taking
κ α α
[0
,
1], then
D n
(
1
)
κ α (α) = α + κ α π α ,
v α + (
1
κ α ) π α ) .
n
1
(
1
κ α λ α )
F n
(
2
)
κ α α (α) =
μ α + κ α π α
,
v α
κ α + λ α
n
1
(
1
κ α λ α )
+ λ α π α
,
where
κ α + λ α
1
.
κ α + λ α
κ α α (α) = κ
v α .
G n
n
n
α
(
3
)
α μ α
H n
n
n
(
4
)
κ α α (α) =
κ
α μ α ,
v
α + (
1
v
α )(
1
(
1
λ α )
)
n 1
t
n
1
t
μ α λ α
0 κ
λ α )
.
(
1
α
t
=
κ
v α ) 1
n
H , n
n
(
5
)
κ,λ (α) =
α μ α ,
v α + (
1
(
1
λ α )
n 1
t
n
1
t
μ α κ α λ α
0 κ
(
1
λ α )
.
α
t
=
μ α ) 1
n
(
6
)
J
κ α α (α) =
μ α + (
1
(
1
κ α )
n 1
t
n
1
t
n
α
v
α κ α
0 (
1
κ α )
λ
v
.
α
α
t
=
 
Search WWH ::




Custom Search