Information Technology Reference
In-Depth Information
where
n
n
(
μ α i w i
(
μ α i )) λ μ α i w i
l
1
μ α i )) λ +
1
μ
n =
1
+ (
1
3
, n =
1
+ (
1
,
i
=
1
i
=
1
(1.294)
n
n
(
3 v α i w i
(
v α i w i
v l 1 , n =
α i )) λ +
v 1 , n =
α i )) λ
1
+ (
1
v
,
1
+ (
1
v
i
=
1
i
=
1
(1.295)
which is a generalized Einstein intuitionistic fuzzy weighted geometric (GEIFWG)
operator.
Case 5 If
γ =
2 and
λ =
1, then Eq. ( 1.285 ) is transformed as:
EIFWG
1 2 ,...,α n )
2 i = 1 μ
i = 1 (
i = 1 (
w i
α
w i
w i
1
+
v
)
1
v
)
α
α
i
i
i
=
i = 1 (
+ i = 1 μ
α i ,
i = 1 (
+ i = 1 (
w i
w i
w i
2
μ α i ))
w i
1
+
v
α i )
1
v
α i )
(1.296)
which is the EIFWG operator (Xia et al. 2012c).
In what follows, we apply the GHIFWA and GHIFWG operators to decision
making (Xia and Xu 2011):
For a multi-attribute decision making problem, let Y , G and w be as defined pre-
viously. The expert provides the performance of the alternative y i under the attribute
G j denoted by the IFVs
α ij
= ij ,
v ij )(
i
=
1
,
2
,...,
m ; j
=
1
,
2
,...,
n
)
.All
the IFVs
α ij
(
i
=
1
,
2
,...,
m ; j
=
1
,
2
,...,
n
)
construct the intuitionistic fuzzy
decision matrix B
b ij ) n × n .
To obtain the alternative(s), the following steps are given (Xia and Xu 2011):
= (
= (
b ij ) n × n into the
Step 1 Transform the intuitionistic fuzzy decision matrix B
normalized intuitionistic fuzzy decision matrix R
= (
r ij ) n × n , where
b ij ,
f or benef it attribute G i
r ij =
,
i
=
1
,
2
,...,
m
;
j
=
1
,
2
,...,
n
b ij ,
f or cost attribute G i
(1.297)
Step 2 Aggregate the intuitionistic fuzzy values r i of the alternative y i by the
GAIFWA or GHIFWG operator:
n
j = 1 w j r ij
1
λ
r i
=
GHIFWA
(
r i 1 ,
r i 2 ,...,
r in ) =
(1.298)
or
n
1
λ
r w j
ij
r i
=
GHIFWG
(
r i 1 ,
r i 2 ,...,
r in ) =
1 λ
(1.299)
j
=
 
Search WWH ::




Custom Search