Biomedical Engineering Reference
In-Depth Information
The potential health and environmental risks have become more of a concern with the growing,
widespread use of nanotechnology. Indeed, for the field to move forward, a thorough understanding
of nanotoxicology is required. One of the major challenges of nanotoxicity assessments is the vast
number of vehicles of exposure and the various pharmacokinetics highly sensitive to even small
changes in the physicochemical properties of nanomaterials. Additionally, highly reactive nano-
materials may experience a change in properties upon interacting with their environments, such
as acquiring or shedding coating, reacting with present compounds, and agglomerating together.
Present research methods allow for the detailed characterization of nanomaterials and their action.
However, multiple tests may be required to account for the multiple facets of each nanomaterial and
its interactions with the environment. As the field of nanotechnology continues to develop, a care-
ful scrutiny of all the properties of nanomaterials is required. In the future, new protocols will be
necessary to improve our capacity to predict the toxicity of nanomaterials.
REFERENCES
Adams, L. K., D. Y. Lyon, and P. J. J. Alvarez. 2006. Comparative eco-toxicity of nanoscale TiO 2 , SiO 2 , and
ZnO water suspensions. Water Research 40(19):3527-3532. doi: 10.1016/j.watres.2006.08.004.
Aillon, K. L., Y. M. Xie, N. El-Gendy, C. J. Berkland, and M. L. Forrest. 2009. Effects of nanomaterial
physicochemical properties on in vivo toxicity. Advanced Drug Delivery Reviews 61(6):457-466. doi:
10.1016/j.addr.2009.03.010.
Alagarasi, A. 2011. Introduction to Nanomaterial . Chennai, India: National Centre for Catalysis Research.
Allen, T. M. 2002. Ligand-targeted therapeutics in anticancer therapy. Nature Reviews Cancer 2(10):750-763.
doi: 10.1038/Nrc903.
Arnida, M. M. Janat-Amsbury, A. Ray, C. M. Peterson, and H. Ghandehari. 2011. Geometry and surface char-
acteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. European
Journal of Pharmaceutics and Biopharmaceutics 77(3):417-423. doi: 10.1016/j.ejpb.2010.11.010.
Arora, S., J. M. Rajwade, and K. M. Paknikar. 2012. Nanotoxicology and in vitro studies: The need of the hour.
Toxicology and Applied Pharmacology 258(2):151-165. doi: 10.1016/j.taap.2011.11.010.
AshaRani, P. V., G. L. K. Mun, M. P. Hande, and S. Valiyaveettil. 2009. Cytotoxicity and genotoxicity of silver
nanoparticles in human cells. ACS Nano 3(2):279-290. doi: 10.1021/Nn800596w.
Astruc, D. 2008. Nanoparticles and Catalysis : Wiley Online Library.
Auffan, M., J. Rose, T. Orsiere, M. De Meo, A. Thill, O. Zeyons, O. Proux, A. Masion, P. Chaurand, O. Spalla,
A. Botta, M. R. Wiesner, and J. Y. Bottero. 2009. CeO 2 nanoparticles induce DNA damage towards
human dermal fibroblasts in vitro . Nanotoxicology 3(2):161-171. doi: 10.1080/17435390902788086.
Baber, N. 1994. International conference on harmonisation of technical requirements for registration of phar-
maceuticals for human use (ICH). British Journal of Clinical Pharmacology 37(5):401.
Baibarac, M., and P. Gomez-Romero. 2006. Nanocomposites based on conducting polymers and carbon nano-
tubes: From fancy materials to functional applications. Journal of Nanoscience and Nanotechnology
6(2):289-302. doi: 10.1166/Jnn.2006.002.
Ballou, B., B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner. 2004. Noninvasive imaging of
quantum dots in mice. Bioconjugate Chemistry 15(1):79-86. doi: 10.1021/bc034153y.
Baroli, B., M. G. Ennas, F. Loffredo, M. Isola, R. Pinna, and M. A. Lopez-Quintela. 2007. Penetration of metal-
lic nanoparticles in human full-thickness skin. Journal of Investigative Dermatology 127(7):1701-1712.
doi: 10.1038/sj.jid.5700733.
Bell, A. T. 2003. The impact of nanoscience on heterogeneous catalysis. Science 299(5613):1688-1691.
Bhushan, B. 2010. Introduction to nanotechnology. In: B. Bhushan (ed.), Springer Handbook of Nanotechnology .
1-13. Berlin Heidelberg: Springer.
Bohnsack, J. P., S. Assemi, J. D. Miller, and D. Y. Furgeson. 2012. The primacy of physicochemical charac-
terization of nanomaterials for reliable toxicity assessment: A review of the zebrafish nanotoxicology
model. In: J. Reineke (ed.), Nanotoxicity , 261-316. New York: Springer.
Borm, P., F. C. Klaessig, T. D. Landry, B. Moudgil, J. Pauluhn, K. Thomas, R. Trottier, and S. Wood. 2006.
Research strategies for safety evaluation of nanomaterials, part V: Role of dissolution in biological fate
and effects of nanoscale particles. Toxicological Sciences 90(1):23-32.
Borup, B., and W. Leuchtenberger. 2002. Soft silanes for scratch-proof surfaces. Materials World 10(3):20-21.
Brady, N. C., and R. R. Weil. 1996. The Nature and Properties of Soils . New Jersey: Prentice-Hall Inc.
Search WWH ::




Custom Search