Biomedical Engineering Reference
In-Depth Information
84. Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S et al. Inhalation vs. aspiration
of single-walled carbon nanotubes in C57BL/6 mice: Inflammation, fibrosis, oxidative stress, and
mutagenesis. American Journal of Physiology—Lung Cellular and Molecular Physiology . 2008;
295(4):L552-65.
85. Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Møller P. Oxidatively damaged DNA in rats
exposed by oral gavage to C 60 fullerenes and single-walled carbon nanotubes. Environmental Health
Perspectives . 2009;117(5):703.
86. Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotox-
icity induced by four typical nanomaterials: The role of particle size, shape and composition. Journal of
Applied Toxicology . 2009;29(1):69-78.
87. Mouchet F, Landois P, Sarremejean E, Bernard G, Puech P, Pinelli E et al. Characterisation and in vivo
ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis .
Aquatic Toxicology . 2008;87(2):127-37.
88. Muller J, Decordier I, Hoet PH, Lombaert N, Thomassen L, Huaux F et al. Clastogenic and aneugenic
effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis . 2008;29(2):427-33.
89. Muller J, Huaux FO, Fonseca A, Nagy JB, Moreau N, Delos M et al. Structural defects play a major role
in the acute lung toxicity of multiwall carbon nanotubes: Toxicological aspects. Chemical Research in
Toxicology . 2008;21(9):1698-705.
90. Karlsson HL, Cronholm P, Gustafsson J, Möller L. Copper oxide nanoparticles are highly toxic: A com-
parison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology .
2008;21(9):1726-32.
91. Pacurari M, Yin XJ, Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS et al. Oxidative and molec-
ular interactions of multi-wall carbon nanotubes (MWCNT) in normal and malignant human mesothelial
cells. Nanotoxicology . 2008;2(3):155-70.
92. Zhu H, Yang H, Owen MR. Combined microarray analysis uncovers self-renewal related signaling in
mouse embryonic stem cells. Systems and Synthetic Biology . 2007;1(4):171-81.
93. Lindberg HK, Falck GC-M, Suhonen S, Vippola M, Vanhala E, Catalán J et al. Genotoxicity of nanoma-
terials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human
bronchial epithelial cells in vitro . Toxicology Letters . 2009;186(3):166-73.
94. Falck G, Lindberg H, Suhonen S, Vippola M, Vanhala E, Catalan J et al. Genotoxic effects of nanosized
and fine TiO 2 . Human and Experimental Toxicology . 2009;28(6-7):339-52.
95. Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N et al. Induction of mesothelioma in
p53± mouse by intraperitoneal application of multi-wall carbon nanotube. The Journal of Toxicological
Sciences . 2008;33(1):105-16.
96. Lam C-W, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and
assessment of potential occupational and environmental health risks. CRC Critical Reviews in Toxicology .
2006;36(3):189-217.
97. Maynard A. Experimental determination of ultrafine TiO 2 deagglomeration in a surrogate pulmonary
surfactant: Preliminary results. Annals of Occupational Hygiene . 2002;46(Suppl 1):197-202.
98. Donaldson K, Borm P, Oberdorster G, Pinkerton K, Stone V, Tran C. Concordance between in vitro and
in vivo dosimetry in the proinflammatory effects of low-toxicity, low-solubility particles: The key role of
the proximal alveolar region. Inhalation Toxicology . 2008;20(1):53-62.
99. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science . 2006;311(5761):622-7.
100. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J et  al. Translocation of inhaled ultra-
fine manganese oxide particles to the central nervous system. Environmental Health Perspectives .
2006;114(8):1172.
101. Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous
administration: Effect of particle size. Colloids and Surfaces B: Biointerfaces . 2008;66(2):274-80.
102. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of
the nanoparticle? A study of the Gram-negative bacterium Escherichia coli . Applied and Environmental
Microbiology . 2007;73(6):1712-20.
103. Jr RFH, Wu N, Porter D, Buford M, Wolfarth M, Holian A. Particle length-dependent titanium dioxide
nanomaterials toxicity and bioactivity. Particle and Fibre Toxicology . 2009;6:35.
104. Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ et al. Surface
charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale . 2011;3(2):410-20.
105. Donaldson K, Stone V, Clouter A, Renwick L, MacNee W. Ultrafine particles. Occupational and
Environmental Medicine . 2001;58(3):211-6.
Search WWH ::




Custom Search