Biomedical Engineering Reference
In-Depth Information
22. Martinelli, V., Cellot, G., Toma, F. M., Long, C. S., Caldwell, J. H., Zentilin, L., Giacca, M. et al. 2012,
Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes.
Nano Lett 12:1831-8.
23. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V.,
Firsov, A. A. 2004, Electric field effect in atomically thin carbon films. Science 306:666-9.
24. Gollavelli G., Ling, Y. C. 2012, Multi-functional graphene as an in vitro and in vivo imaging probe.
Biomaterials 33:2532-45.
25. Duch, M. C., Budinger, G. R., Liang, Y. T., Soberanes, S., Urich, D., Chiarella, S. E., Campochiaro, L. A.
et al. 2011, Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of gra-
phene in the lung. Nano Lett 11:5201-7.
26. Barnes, C. A., Elsaesser, A., Arkusz, J., Smok, A., Palus, J., Le´niak, A., Salvati, A., Hanrahan, J. P.,
Jong, W. H. D., Dziubałtowska, E. B. 2008, Reproducible comet assay of amorphous silica nanoparticles
detects no genotoxicity. Nano Lett 8:3069-74.
27. Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., Bruinink, A., Stark, W. J.
2006, In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of par-
ticle solubility. Environ Sci Technol 40:4374-81.
28. Galagudza, M. M., Korolev, D. V., Sonin, D. L., Postnov, V. N., Papayan, G. V., Uskov, I. S., Belozertseva,
A. V., Shlyakhto, E. V. 2010, Targeted drug delivery into reversibly injured myocardium with silica nanopar-
ticles: Surface functionalization, natural biodistribution, and acute toxicity. Int J Nanomed 5:231-7.
29. Nishimori, H., Kondoh, M., Isoda, K., Tsunoda, S.-I., Tsutsumi, Y., Yagi, K. 2009, Histological analysis
of 70-nm silica particles-induced chronic toxicity in mice. Eur J Pharm Biopharm 72:626-9.
30. He, Q., Zhang, Z., Gao, F., Li, Y., Shi, J. 2011, In vivo biodistribution and urinary excretion of mesopo-
rous silica nanoparticles: Effects of particle size and PEGylation. Small 7:271-80.
31. Huang, X., Li, L., Liu, T., Hao, N., Liu, H., Chen, D., Tang, F. 2011, The shape effect of mesoporous
silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo . ACS Nano 5:5390-9.
32. Kumar, R., Roy, I., Ohulchanskky, T. Y., Vathy, L. A., Bergey, E. J., Sajjad, M., Prasad, P. N. 2010, In vivo
biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS
Nano 4:699-708.
33. Liu, X., Sun, J. 2010, Endothelial cells dysfunction induced by silica nanoparticles through oxidative
stress via JNK/P53 and NF-κB pathways. Biomaterials 31:8198-209.
34. Corbalan, J. J., Medina, C., Jacoby, A., Malinski, T., Radomski, M. W. 2012, Amorphous silica nanoparti-
cles aggregate human platelets: Potential implications for vascular homeostasis. Int J Nanomed 7:631-9.
35. Kasper, J., Hermanns, M. I., Bantz, C., Maskos, M., Stauber, R., Pohl, C., Unger, R. E., Kirkpatrick, J. C.
2011, Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanopar-
ticles: Comparison with conventional monocultures. Part Fibre Toxicol 8:6.
36. Khlebtsov, N., Dykman, L. 2011, Biodistribution and toxicity of engineered gold nanoparticles: A review
of in vitro and in vivo studies. Chem Soc Rev 40:1647-71.
37. Johnston, H. J., Hutchison, G., Christensen, F. M., Peters, S., Hankin, S., Stone, V. 2010, A review of the
in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms
responsible for the observed toxicity. Crit Rev Toxicol 40:328-46.
38. Abdelhalim, M. A. 2011, Gold nanoparticles administration induces disarray of heart muscle, hemor-
rhagic, chronic inflammatory cells infiltrated by small lymphocytes, cytoplasmic vacuolization and con-
gested and dilated blood vessels. Lipids Health Dis 10:233.
39. Abdelhalim, M. A. 2011, The effects of size and period of administration of gold nanoparticles on rheo-
logical parameters of blood plasma of rats over a wide range of shear rates: In vivo . Lipids Health Dis
10:191.
40. Abdelhalim, M. A. 2011, Exposure to gold nanoparticles produces cardiac tissue damage that depends on
the size and duration of exposure. Lipids Health Dis 10:205.
41. Abdelhalim, M. A., Jarrar, B. M. 2011, Gold nanoparticles administration induced prominent inflamma-
tory, central vein intima disruption, fatty change and Kupffer cells hyperplasia. Lipids Health Dis 10:133.
42. Sonavane, G., Tomoda, K., Makino, K. 2008, Biodistribution of colloidal gold nanoparticles after intra-
venous administration: Effect of particle size. Colloids Surf B Biointerfaces 66:274-80.
43. De Jong, W. H., Hagens, W. I., Krystek, P., Burger, M. C., Sips, A. J., Geertsma, R. E. 2008, Particle
size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials
29:1912-9.
44. Thakor, A. S., Luong, R., Paulmurugan, R., Lin, F. I., Kempen, P., Zavaleta, C., Chu, P., Massoud,
T. F., Sinclair, R., Gambhir, S. S. 2011, The fate and toxicity of Raman-active silica-gold nanoparticles
in mice. Sci Transl Med 3:79ra33.
Search WWH ::




Custom Search