Biomedical Engineering Reference
In-Depth Information
organism, in response to a perturbation (Rusyn and Daston, 2010). In addition, the information from
toxicogenomics can also be used to identify pathways, which are responsible for the toxic proper-
ties. Combined with the conventional methods of toxicity studies, toxicogenomics has the potential
to reveal the underlying mechanisms of nanotoxicity and establish a system to predict nanotoxic-
ity for both government and industry. To date, there are many predictive models for conventional
chemicals, which are convenient, fast, and relatively reliable, but not specific for nanomaterials.
These models, with certain adjustments, may be evolved to be applicable for nanoparticles.
REFERENCES
Ahamed, M., Karns, M., Goodson, M. et  al. 2008. DNA damage response to different surface chemistry of
silver nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol . 233, 404-410.
Arora, S., Rajwade, J. M., Paknikar, K. M. 2012. Nanotoxicology and in vitro studies: The need for the hour.
Toxicol. Appl. Pharmacol . 258, 151-165.
AshaRani, P. V., Mun, G. L. K., Hande, M. P. and Valiyaveettil, S. 2008. Cytotoxicity and genotoxicity of silver
nanoparticles in human cells. ACS. Nano . 24, 279-290.
Barnard, A. S. 2009. Computational strategies for predicting the potential risks associated with nanotechnol-
ogy. Nanoscale . 1, 89-95.
Burello, E. and Worth, A. 2011. Predicting toxicity of nanoparticles. Nat. Nanotechnol. 6, 138-139.
Cohen, Y., Rallo, R., Liu, R. and Liu, H. H. 2013. In silico analysis of nanomaterials hazard and risk. Acc.
Chem. Res . 46(3), 802-812.
Cornin, M. T. D., Enoch, S. J., Hewitt, M., and Madden, J. C. 2011. Formation of mechanistic categories and
local models to facilitate the predication of toxicity. ALTEX . 28, 45-49.
Cronin, M. T. D., Enoch, S. J., Hewitt, M., and Madden, J. C. 2009. Formation of Mechanistic Categories and
Local Models to Facilitate the Prediction of Toxicity. Highlights of WC7—7th Worldcongress in Rome
2009. ALTEX . 28, 45-49.
Cronin, M. T. D. 2002. The current status and future applicability of quantitative structure-activity relation-
ships (QSARs) in predicting toxicity. Altern. Lab. Anim . 30, 81-84.
Dua, P., Chaudhari, K. N., Lee, C. H. et al. 2011. Evaluation of toxicity and gene expression changes triggered
by oxide nanoparticles. Bull. Korean. Chem. Soc . 32, 2051-2057.
Fischer, H. C. and Chan, W. C. W. 2007. Nanotoxicity: The growing need for in vivo study. Curr. Opin.
Biotechnol . 18, 565-571.
Gagne, F., Andre, C., Skirrow, R. et al. 2012. Toxicity of silver nanoparticles to rainbow trout: A toxicogenomic
approach. Chemosphere . 89, 615-622.
Gopinath, P., Gogoi, S. K., Sanpui, P. et al. 2010. Signaling gene cascade in silver nanoparticle induced apop-
tosis. Colloids Surf. B. Biointerfaces . 77, 240-245.
Griffitt, R. J., Weild, R., Hyndman, K. A. et al. 2007. Exposure to copper nanoparticles causes gill injury and
acute lethality in zebrafish. Environ. Sci. Technol. 41(23), 8178-8186.
Hackenberg, S., Scherzed, A., Kessler, M. et al. 2011. Silver nanoparticles: Evaluation of DNA damage, toxic-
ity and functional impairment in human mesenchymal stem cells. Toxicol. Lett . 201, 27-33.
Heinrich, U., Fuhst, R., Rittinghausen, S. et al. 1995. Chronic inhalation exposure of Wistar rats and two dif-
ferent strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal. Toxicol . 7,
533-556.
Houck, K. A. and Kavlock, R. J. 2008. Understanding mechanisms of toxicity: Insights from drug discover
research. Toxicol. Appl. Pharmacol . 227(2), 163-178.
Karlsson, H. L. 2010. The comet assay in nanotoxicology research. Anal. Bioanal. Chem. 398, 651-666.
Kim, H. R., Kim, M. J., Lee, S. Y. et al. 2011. Genotoxic effects of sliver nanoparticles stimulated by oxidative
stress in human normal bronchial epithelial (BEAS-2B) cells. Mut. Res. 736, 129-135.
Kim, S., Choi, J. E., Choi, J. et al. 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human
hepatoma cells. Toxicol. In Vitro . 23, 1076-1084.
Kim, Y. S., Kim, J. S., Cho, H. S. et al. 2008. Twenty-eight-day oral toxicity, genotoxicity, and gender-related
tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol . 20(6), 575-583.
Kyung Eun, C. and Myung, H. 2007. Cytotoxic effects of nanoparticles assessed in vitro and in vivo.
J. Microbiol. Biotechnol . 17, 1573-1578
Limbach, L. K., Wick, P., Manser, P. et al. 2007. Exposure of engineered nanoparticles to human lung epithelial
cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol .
41, 4158-4163.
Search WWH ::




Custom Search