Biomedical Engineering Reference
In-Depth Information
51. Hondow, N., Brydson, R., Wang, P. Y. et al. 2012. Quantitative characterization of nanoparticle agglom-
eration within biological media. J. Nanopart. Res. 14: 977.
52. Win, K. Y. and Feng, S. S. 2005. Effects of particle size and surface coating on cellular uptake of poly-
meric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26: 2713-2722.
53. Drescher, D. and Kneipp, J. 2012. Nanomaterials in complex biological systems: Insights from Raman
spectroscopy. Chem. Soc. Rev. 41: 5780-5799.
54. Downes, A. and Elfick, A. 2010. Raman spectroscopy and related techniques in biomedicine. Sensors 10:
1871-1889.
55. Braun, G., Lee, S. J., Dante, M. et al. 2007. Surface enhanced Raman spectroscopy for DNA detection by
nanoparticle assembly onto smooth metal films. J. Am. Chem. Soc. 129: 6378-6379.
56. Bell, S. E. J. and Sirimuthu, N. M. S. 2006. Surface-enhanced Raman spectroscopy (SERS) for sub-
micromolar detection of DNA/RNA mononucleotides. J. Am. Chem. Soc. 128: 15580-15581.
57. Bizzarri, A. R. and Cannistraro, S. 2007. SERS detection of thrombin by protein recognition using func-
tionalized gold nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3: 306-310.
58. Kim, J. H., Kim, J. S., Choi, H. et al. 2006. Nanoparticle probes with surface enhanced Raman spectro-
scopic tags for cellular cancer targeting. Anal. Chem. 78: 6967-6973.
59. Sathuluri, R. R., Yoshikawa, H., Shimizu, E., Saito, M., and Tamiya, E. 2011 Gold nanoparticle-based
surface-enhanced Raman scattering for noninvasive molecular probing of embryonic stem cell differen-
tiation. PLoS ONE 6: e22802.
60. Sun L., Sung K. B., Dentinger C., Lutz B., Nguyen L. et al. 2007. Composite organic-inorganic nanopar-
ticles as Raman labels for tissue analysis. Nano Lett . 7: 351-356.
61. Yu K. N., Lee S. M., Han J. Y. et al. 2007. Multiplex targeting, tracking, and imaging of apoptosis by
fluorescent surface enhanced Raman spectroscopic dots. Bioconjug. Chem. 18: 1155-1162.
62. Keren, S., Zavaleta, C., Cheng, Z., dela Zerda, A., Gheysens, O., and Gambhir, S. S. 2008. Noninvasive
molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 105:
5844-5849.
63. Kang, J. W., Nguyen, F. T., Lue, N., Dasari, R., and Heller, D. A. 2012. Measuring uptake dynamics of
multiple identifiable carbon nanotube species via high-speed confocal Raman imaging of live cells. Nano
Lett. DOI:10.1021/nl302991y.
64. Liu, Z., Davis, C., Cai, W. B., He, L., Chen, X. Y., and Dai, H. J. 2008. Circulation and long-term fate of
functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy.
Proc. Natl. Acad. Sci. USA 105: 1410-1415.
65. Dorney, J. Bonnier, F., Garcia, A., Casey, A., Chambers, G., and Byrne, H. J. 2012. Identifying and local-
izing intracellular nanoparticles using Raman spectroscopy. Analyst 137: 1111-1119.
66. Zhang, Y. B., Xu, Y., Li, Z. G. et al. 2011. Mechanistic toxicity evaluation of uncoated and PEGylated
single-walled carbon nanotubes in neuronal PC12 cells. ACS Nano 5: 7020-7033.
67. Andersson, P. A., Lejon, C., Ekstrand-Hammarstrom, B. et  al. 2011. Polymorph- and size-dependent
uptake and toxicity of TiO 2 nanoparticles in living lung epithelial cells. Small 7: 514-523.
68. Zavaleta, C., dela Zerda, A., Liu, Z. et  al. 2008. Noninvasive Raman spectroscopy in living mice for
evaluation of tumor targeting the carbon nanotubes. Nano Lett. 8: 2800-2805.
69. Luyts, K., Napierska, D., Nemery, B., and Hoet, P. H. M. 2013. How physico-chemical characteristics
of nanoparticles cause their toxicity: Complex and unresolved interrelations. Environ. Sci. Processes
Impacts 15: 23-38.
70. Xia, T., Kovochich, M., Liong, M. et al. 2008. Comparison of the mechanism of toxicity of zinc oxide
and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:
2121-2134.
71. Brunner, T. J., Wick, P., Manser, P. et al. 2006. In vitro cytotoxicity of oxide nanoparticles: Comparison
to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40: 4374-4381.
72. Franklin, N. N., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E., and Casey, P. S. 2007. Comparative
toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl 2 to a freshwater microalga ( Pseudokirchneriella
subcapitata ): The importance of particle solubility. Environ. Sci. Technol. 41: 8484-8490.
73. Gilbert, B., Fakra, S. C., Xia, T., Pokhrel, S., Madler, L., and Nel, A. E. 2012. The fate of ZnO nanopar-
ticles administered to human bronchial epithelial cells. ACS Nano 6: 4921-4930.
74. Magdolenova, Z., Collins, A. R., Kumar, A., Dhawam, A., Stone, V., and Dusinska, M. 2014.
Mechanisms of genotoxicity: Review of recent in vitro and in vivo studies with engineered nanoparticles.
Nanotoxicology. 8:233-237.
75. Studer, A. M., Limbach, L. K., Van Duc, L. et  al. 2010. Comparison of stabilized copper metal and
degradable copper oxide nanoparticles. Toxicol. Lett. 197: 169-174.
Search WWH ::




Custom Search