Biomedical Engineering Reference
In-Depth Information
25. Moller, P., Jacobsen, N. R., Folkmann, J. K. et al. 2010. Free Radical Res. 44: 1-46.
26. Kohen, R. and Nyska, A. 2002. Oxidation of biological systems: Oxidative stress phenomena, antioxi-
dants, redox reactions, and methods for their quantification. Toxicol. Pathol. 30:620-650.
27. Giessibl, F. J. 2003. Advances in atomic force microscopy. Rev. Mod. Phys. 75: 949-983.
28. Hinterdorfer, P. and Dufrene, Y. F. 2006. Detection and localization of single molecular recognition
events using atomic force microscopy. Nat. Meth. 3: 347-355.
29. Xu, M. S., Pathak, Y., Fujita, D., Ringor, C., and Miyazawa, K. 2008. Covered conduction of individual
C 60 nanowhiskers. Nanotechnology 19: 075712.
30. Mohamed, H. D. A., Watson, S. M. D., Horrocks, B. R., and Houlton, A. 2012. Magnetic and conductive
magnetite nanowires by DNA-templating. Nanoscale 4: 5936-5945.
31. Hasseloev, M. and Kaegi, R. 2009. Analysis and characterization of manufactured nanoparticles in
aquatic environments. Environmental and Human Health Impact of Nanotechnology , Lead, J. R. Ed.,
Smith, E. Blackwell Publishing Ltd.
32. Domingos, R., Ballousha, M. A., Nam, Y. et al. 2009. Characterizing manufactured nanoparticles in the
environment: Multimethod determination of particle sizes. Environ. Sci. Technol. 43: 7277-7284.
33. Brar, S. K. and Verma, M. 2011. Measurement of nanoparticles by light-scattering techniques. Trend.
Anal. Chem. 30: 4-17.
34. Monopoli, M. P., Walczyk, D., Campbell, A. et  al. 2011. Physical-chemical aspects of protein
corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133:
2525-2534.
35. Filipe, V., Hawe, A., and Jiskoot, W. 2010. Critical evaluation of nanoparticle tracking analysis (NTA) by
NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 27: 796-810.
36. Walker, J. G. 2012. Improved nano-particle tracking analysis. Meas. Sci. Technol. 23: 065605.
37. Hassellov, M., Readman, J. M., Ranville, J. F., and Tiede, K. 2008. Nanoparticle analysis and character-
ization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17:
344-361.
38. Laidlaw, I. and Steinmetz, M. 2005. Introduction to differential sedimentation. Analytical
Ultracentrifugation: Techniques and Methods , Scott D. J., Harding S. E., Rowe A.J., Eds. 1st ed.
Cambridge: The Royal Society of Chemistry, pp 270-290.
39. Thomas, J. C., Middelberg, A. P., Hamel, J. F., and Snoswell, M. A. 1991. High-resolution particle size
analysis in biotechnology process control. Biotechnol. Prog. 7: 377-379.
40. Zolls, S., Tantipolphan, R., Wiggenhorn, M., Winter, G., Jiskoot, W., Friess, W., and Hawe, A. 2012.
Particles in therapeutic protein formulations, Part 1: Overview of analytical methods. J. Pharm. Sci. 101:
914-935.
41. von der Kammer, F., Ferguson, P. L., Holden, P. A. et al. 2012. Analysis of engineered nanomaterials in
complex matrices (environment and biota): General considerations and conceptual case studies. Environ.
Toxicol. Chem. 31: 32-49.
42. Reed, R. B., Higgins, C. P., Westerhoff, P., Tadjiki, S., and Ranville, J. F. 2012. Overcoming challenges
in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma
mass spectrometry. J. Anal. At. Spectrom. 27: 1093-1100.
43. Gray, E. P., Bruton, T. A., Higgins, C. P., Halden, R. U., Westerhoff, P., and Ranville, J. F. 2012. Analysis
of gold nanoparticle mixtures: A comparison of hydrodynamic chromatography (HDC) and asymmetri-
cal flow field-flow fractionation (AF4) coupled to ICP-MS. J. Anal. At. Spectrom. 27: 1532-1539.
44. SCCS/1448/12 (Scientific Committee on Consumer Safety), Guidance on safety assessment of nanoma-
terials in cosmetics, June 26-27, 2012.
45. Walczyk, D., Bombelli, F. B., Monopoli, M. P., Lynch, I., and Dawson, K. A. 2010. What the cell “see”
in bionanoscience. J. Am. Chem. Soc. 132: 5761-5768.
46. Azizeh-Mitra Yousefi, A. M., Zhou, Y. L., Querejeta-Fernández, A., Sun, K., and Kotov, N. A. 2012.
Streptavidin inhibits self-assembly of CdTe nanoparticles. J. Phys. Chem. Lett. 3: 3249-3256.
47. Gratton, S. E. A., Ropp, P. A., Pohlhaus, P. D. et al. 2008. The effect of particle design on cellular inter-
nalization pathways. Proc. Natl. Acad. Sci. USA 105: 11613-11618.
48. Belade, E., Armand, L., Matinon, L. et al. 2012. A comparative transmission electron microscopy study
of titanium dioxide and carbon black nanoparticles uptake in human lung epithelial and fibroblast cell
lines. Toxicol. In Vitro. 26: 57-66.
49. Javier, A. M., Kreft, O., Semmling, M. et al. 2008. Uptake of colloidal polyelectrolyte-coated particles
and polyelectrolyte multilayer capsules by living cells. Adv. Mater. 20: 4281-4287.
50. Kuntsche, J., Horst, J. C., and Bunjes, H. 2011. Cryogenic transmission electron microscopy (cryo-TEM)
for studying the morphology of colloidal drug delivery systems. Int. J. Pharm. 417: 120-137.
Search WWH ::




Custom Search