Biomedical Engineering Reference
In-Depth Information
5
Biosensing Devices for Toxicity
Assessment of Nanomaterials
Evangelia Hondroulis, Pratik Shah, Xuena Zhu,
and Chen-Zhong Li
CONTENTS
5.1 Introduction .......................................................................................................................... 117
5.1.1 Biosensors ................................................................................................................. 117
5.1.2 Nanotoxicity .............................................................................................................. 119
5.2 Cellular-Based Biosensors for Nanotoxicity ......................................................................... 120
5.3 Techniques and Devices for Nanotoxicity Testing ............................................................... 120
5.3.1 Carbon Fiber Microelectrode ................................................................................... 121
5.3.2 Atomic Force Microscopy ........................................................................................ 121
5.4 Biosensors for Nanotoxicity Biomarker Detection ............................................................... 122
5.4.1 Background ............................................................................................................... 122
5.4.2 Common Methods for Nanotoxicity Assessment ..................................................... 122
5.4.2.1 Cell Viability/Proliferation Assay.............................................................. 122
5.4.2.2 Direct/Indirect Intracellular ROS Measurement ....................................... 123
5.4.2.3 Assays on the Genomic Level .................................................................... 123
5.4.3 Biosensing Approaches for Inflammatory Biomarkers Detection ............................ 123
5.4.4 Paper-Based Biosensor for ROS-Induced DNA Oxidative Damage
Biomarkers Detection ............................................................................................... 124
5.5 Conclusion ............................................................................................................................ 124
References ...................................................................................................................................... 125
5.1 INTRODUCTION
5.1.1 B IoseNsors
Living cells are associated with electrical characteristics and are thus responsive to, and even
generate, electric fields and currents. Knowledge of these electrical properties of cells has led to the
development of the field of bioelectronics. Bioelectronics is the application of electronics to biology
and medicine and can be broken down into two categories. Physically interfacing electronic devices
with biological systems have led to technologies such as the cardiac pacemaker, implantable electri-
cal bone growth simulators, deep brain simulators, and electrical nerve simulation (Nowak et al.
2011). The other aspect of bioelectronics is electronics for both the detection and characterization of
biological materials, such as on the cellular and subcellular level. This can be seen in the example
of cell-based biosensors that use live cells as sensing elements to monitor the physiological changes
induced by internal aberrations or external stimuli (Asphahani and Zhang 2007).
Biosensors are becoming valuable tools for analyzing various physical, chemical, and biologi-
cal processes. Since 1956, when Professor Leland C. Clark Jr. first published a paper on the oxy-
gen electrode (Clark 1956), researchers have incorporated and enhanced biosensing technologies
117
 
Search WWH ::




Custom Search