Biomedical Engineering Reference
In-Depth Information
16. Soma, T., Chiba, H., Kato-Mori, Y., Wada, T., Yamashita, T., 2004, “Thr (207)
of claudin-5 is involved in size-selective loosening of the endothelial barrier by
cyclic AMP,” Exp. Cell. Res., 300, pp. 202-212.
17. Hawkins, B.T., and Davis, T.P., 2005, “The blood-brain barrier/neurovascular
unit in health and disease,” Pharmacol. Rev., 57, pp. 173-185.
18. Petty, M.A., and Lo, E.H., 2002, “Junctional complexes of the blood-brain
barrier: permeability changes in neuroinflammation,” Prog. Neurobiol., 68,
pp. 311-323.
19. Uchino, H., Kanai, Y., Kim, K., Wempe, M.F., Chairoungdua, Y., et al., 2002,
“ Transport of amino acid-related compounds mediated by L-type amino acid
transporter1 (LAT1): Insights into the mechanisms of substrate recognition,”
Mol. Pharmacol., 61, pp. 729-737.
20. Girardin, F., 2006, “Membrane transporter proteins: a challenge for CNS drug
development,” Dialogues Clin. Neurosci., 8, pp. 311-321.
21. Urquhart, B.L., and Kim, R.B., 2009, “Blood-brain barrier transporters and
response to CNS-active drugs,” Eur. J. Clin. Pharmacol., 65, pp. 1063-1070.
22. Kemper, E.M., Boogerd, W., Thuis, I., Beijnen, J.H., van Tellingen, O., 2004,
“Modulation of the blood-brain barrier in oncology: therapeutic opportunities
for the treatment of brain tumours?” Cancer Treat. Rev., 30, pp. 415-423.
23. Pardridge, W.M., 2007, “Blood-brain barrier delivery,” Drug Discov. Today,
12, pp. 54-61.
24. Moos, T., and Morgan, E.H., 2004, “The metabolism of neuronal iron and its
pathogenic role in neurological disease: review,” Ann. N. Y. Acad. Sci., 1012,
pp. 14-26.
25. Jain, S., Mishra, V., Singh, P., Dubey, P.K., Saraf, D.K., Vyas, S.P., 2003,
“RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated
brain targeting,” Int. J. Pharm., 261, pp. 43-55.
26. Farokhzad, O.C., and Langer, R., 2009, “Impact of nanotechnology on drug
delivery,” ACS Nano, 3, pp. 16-20.
27. Sinha, R., Kim, G.J., Nie, S., Shin, D.M., 2006, “Nanotechnology in cancer
therapeutics: Bioconjugated nanoparticles for drug delivery,” Mol. Canc. Ther.,
5, pp. 1909-1917.
28. Brigger, I., Dubernet, C., Couvreur, P., 2002, “Nanoparticles in cancer therapy
and diagnosis,” Adv. Drug Deliv. Rev., 54, pp. 631-651.
29. Koo, O.M., Rubinstein, I., Onyuksel, H., 2005, “Role of nanotechnology
in targeted drug delivery and imaging: a concise review,” Nanomedicine, 1,
pp. 193-212.
30. Wen, P.Y., Yung, W.K., Lamborn, K.R., Dahia, P.L., Wang, Y., et al., 2006,
“Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North
American Brain Tumor Consortium Study 99-08,” Clin. Cancer Res., 12,
pp. 4899-4907.
31. Caruso, G., Caffo, M., Raudino, G., Alafaci, C., Salpietro, F.M., Tomasello, F.,
2010, “Antisense oligonucleotides as an innovative therapeutic strategy in the
treatment of high-grade gliomas,” Rec. Pat. CNS Drug Discov., 5, pp. 53-69.
32. Moghimi, S.M., 2006, “Recent developments in polymeric nanoparticle
engineering and their applications in experimental and clinical oncology,”
Anticancer Agents Med. Chem., 6, pp. 553-561.
Search WWH ::




Custom Search