Environmental Engineering Reference
In-Depth Information
Markovic NM, Adzic RR, Cahan BD, Yeager EB. 1994. Structural effects in electrocatalysis—
Oxygen reduction on platinum low-index single-crystal surfaces in perchloric-acid solutions.
J Electroanal Chem 377: 249 - 259.
Markovic N, Gasteiger H, Ross PN. 1997a. Kinetics of oxygen reduction on Pt(hkl) electrodes:
Implications for the crystallite size effect with supported Pt electrocatalysts. J Electrochem
Soc 144: 1591 - 1597.
Markovic NM, Grgur BN, Ross PN. 1997b. Temperature-dependent hydrogen electrochemistry
on platinum low-index single-crystal surfaces in acid solutions. J Phys Chem B 101:
5405 - 5413.
Maroun F, Ozanam F, Magnussen OM, Behm RJ. 2001. The role of atomic ensembles in the
reactivity of bimetallic electrocatalysts. Science 293: 1811 - 1814.
Mayrhofer KJJ, Arenz M, Blizanac BB, Stamenkovic VR, Ross PN, Markovic NM. 2005a. CO
surface electrochemistry on Pt-nanoparticles: A selective review. Electrochim Acta 50:
5144 - 5154.
Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM. 2005b. The
impact of geometric and surface electronic properties of Pt-catalysts on the particle size
effect in electrocatalysis. J Phys Chem B 109: 14433 - 14440.
Mays CW, Vermaak JS, Kuhlmann-Wilsdorf D. 1968. On surface stress and surface tension: II.
Determination of the surface stress of gold. Surf Sci 12: 134 - 140.
Mazurek M, Benker N, Roth C, Buhrmester T, Fuess H. 2006. Electrochemical impedance and
X-ray absorption spectroscopy (EXAFS) as in situ methods to study PEMFC anode. Fuel
Cells 6: 16 - 20.
Mukerjee S. 1990. Particle-size and structural effects in platinum electrocatalysis. J Appl
Electrochem 20: 537 - 548.
Mukerjee S, McBreen J. 1998. Effect of particle size on the electrocatalysis by
carbon-supported Pt electrocatalysts: an in situ XAS investigation. J Electroanal Chem
448: 163 - 171.
Nagaev EL. 1991. Equilibrium properties of small particles at their ultralow vapour pressures
Surf Sci 243: 252 - 260.
Nagaev EL. 1992. Equilibrium and quasiequilibrium properties of small particles. Phys Rep
222: 199 - 307.
Nepijko SA, Klimenkov M, Kuhlenbeck H, Zemlyanov D, Herein D, Schl ¨ gl R, Freund H-J.
1998. TEM study of tantalum clusters on Al 2 O 3 /NiAl(110). Surf Sci 412/413: 192 - 201.
Pacchioni G, Illas F. 2003. Electronic structure and chemisorption properties of supported metal
clusters: model calculations. In: Wieckowski A, Savinova ER, Vayenas CG. editors.
Catalysis and Electrocatalysis at Nanoparticle Surfaces. New York: Marcel Dekker.
Papoutsis A, L´ger JM, Lamy C. 1987. New results for the electrosorption of methanol on poly-
crystalline platinum in acid medium obtained by programmed potential voltammetry.
J Electroanal Chem 234: 315 - 327.
Park S, Wasileski SA, Weaver MJ. 2001. Electrochemical infrared characterization of
carbon-supported platinum nanoparticles: A benchmark structural comparison with
single-crystal electrodes and high-nuclearity carbonyl clusters. J Phys Chem B 105:
9719 - 9725.
Park S, Tong YT, Wieckowski A, Weaver MJ. 2002a. Infrared spectral comparison of electro-
chemical carbon monoxide adlayers formed by direct chemisorption and methanol dis-
sociation on carbon-supported platinum nanoparticles. Langmuir 18: 3233 - 3240.
Search WWH ::




Custom Search