Geoscience Reference
In-Depth Information
2 κ j Q ( 2 )
2 κ h F ( 2 ) h ) . Thus under axisymmetry Eq. (16.33)
so that
c,cu j ( κ h )
=
becomes
∂φ ( 2 ) h )
∂t
2 Co ( 2 )
2 C , 3 Co ( 2 )
2 κ h F ( 2 ) h )
=−
+
c,u 3 h )
c,(cu 3 ) , 3 h )
3 γκ h φ ( 2 ) h ).
(16.35)
We now integrate Eq. (16.35) over circular rings in the horizontal wavenumber
plane, reintroducing the two-dimensional scalar spectrum defined in Chapter 15 :
2 π
E ( 2 )
φ ( 2 ) h h
2 πκ h φ ( 2 ) h ).
h )
=
=
( 15 . 97 )
c
0
We define a production spectrum P ( 2 ) h ) ,
2 π
P ( 2 ) h )
2 C , 3 Co ( 2 )
=−
c,u 3 h h dθ,
(16.36)
0
a horizontal transfer spectrum T ( 2 )
h ) ,
h
2 π
T ( 2 )
2 κ h F ( 2 ) h h dθ,
h )
=
(16.37)
h
0
and a spectrum of vertical turbulent transport,
2 π
2 Co ( 2 )
T ( 2 )
h )
=−
c,(cu 3 ) , 3 h h dθ.
(16.38)
v
0
This gives the spectral scalar variance budget in the horizontal plane,
∂E ( 2 c h )
∂t
T ( 2 )
P ( 2 ) h )
T ( 2 )
3 γκ h E ( 2 c h ).
=
+
h )
+
h )
(16.39)
v
h
This is the counterpart of the isotropic turbulence result, Eq. (16.19) ( Problem
16.11 ) .
The terms in Eq. (16.39) integrate over κ h to the terms in the variance budget
(16.26) :
T ( 2 )
P ( 2 ) h )dκ h =−
2 C , 3 cu 3 =
Pr,
h )dκ h =
0
;
h
0
0
3 γ
0
T ( 2 )
κ h E ( 2 c h )
(c 2 u 3 ) , 3 =
h )dκ h =−
Tr,
=−
χ c .
(16.40)
v
0
 
Search WWH ::




Custom Search