Biology Reference
In-Depth Information
Roulston, T.H., Cane, J.H., & Buchmann, S.L. (2000). What governs protein content of
pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecological Mono-
graphs , 70 , 617-643.
Rowley, D.A., & Halliwell, B. (1983). Formation of hydroxyl radicals from hydrogen perox-
ide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the
pathology of rheumatoid disease. Clinical Science (London) , 64 , 649-653.
Rusterholz, H.P., & Erhardt, A. (1998). Effects of elevated CO 2 on flowering phenology and
nectar production of nectar plants important for butterflies of calcareous grasslands.
Oecologia , 113 , 341-349.
Sandhu, D.K., & Waraich, M.K. (1985). Yeasts associated with pollinating bees and flower
nectar. Microbial Ecology , 11 , 51-58.
Sazima, M., Vogel, S., do Prado, A.L., de Oliveira, D.M., Franz, G., & Sazima, I. (2001). The
sweet jelly of Combretum lanceolatum flowers (Combretaceae): a cornucopia resource for
bird pollinators in the Pantanal, western Brazil. Plant Systematics and Evolution , 227 ,
195-208.
Schwerdtfeger, M. (1996). Die Nektarzusammensetzung der Asteridae und ihre Beziehung zu
Blütenökologie und Systematik. Dissertationes Botanicae , 264 , 95 pp. Berlin: Gebrüder
Borntraeger.
Scobell, S.A., & Scott, P.E. (2002). Visitors and floral traits of a hummingbird-adapted cactus
( Echinocereus coccineus ) show only minor variation along an elevational gradient. Ameri-
can Midland Naturalist , 147 , 1-15.
Scogin, R. (1979). Nectar constituents in the genus Fremontia (Sterculiaceae): sugars, flavon-
oids, and proteins. Botanical Gazette , 140 , 29-31.
Seigler, D., Simpson, B.B., Martin, C., & Neff, J.L. (1978). Free 3-acetoxyfatty acids in floral
glands of Krameria species. Phytochemistry , 17 , 995-996.
Shiraishi, A., & Kuwabara, M. (1970). The effects of amino acids on the labellar hair chemo-
sensory cells of the fly. Journal of General Physiology , 56 , 768-782.
Singaravelan, N., Nee'man, G., Inbar, M., & Izhaki, I. (2005). Feeding responses of free-
flying honeybees to secondary compounds mimicking floral nectars. Journal of Chemical
Ecology , 31 , 2791-2804.
Smith, G.F., Van Wyk, B.-E., Steyn, E.M.A., & Breuer, I. (2001). Infrageneric classification
of Haworthia (Aloaceae): perspectives from nectar sugar analysis. Systematics and Geog-
raphy of Plants , 71 , 391-397.
Smith, L.L., Lanza, J., & Smith, G.C. (1990). Amino acid concentrations in extrafloral nectar
of Impatiens sultani increase after simulated herbivory. Ecology , 71 , 107-115.
Sols, A., Cadenas, E., & Alvarado, F. (1960). Enzymatic basis of mannose toxicity in honey
bees. Science , 131 , 297-298.
Sroka, Z., Cisowski, W., Seredyńska, M., & Luczkiewicz, M. (2001). Phenolic extracts from
meadowsweet and hawthorn flowers have antioxidative properties. Zeitung für Naturfor-
schung C , 56 , 739-744.
Stebbins, G.L. (1989). Adaptive shifts toward hummingbird pollination. In: J.H. Bock, &
Y.B. Linhart (Eds.), The evolutionary ecology of plants (pp. 39-60). Boulder, Colorado:
Westview Press.
Stephenson, A.G. (1982). Iridoid glycosides in the nectar of Catalpa speciosa are unpalatable
to nectar thieves. Journal of Chemical Ecology , 8 , 1025-1034.
Stiles, F.G. (1981). Geographical aspects of bird-flower coevolution, with particular reference
to Central America. Annals of the Missouri Botanical Garden , 68 , 323-351.
Stiles, F.G., & Freeman, C.E. (1993). Patterns in floral nectar characteristics of some bird-
visited plant species from Costa Rica. Biotropica , 25 , 191-205.
Search WWH ::




Custom Search