Agriculture Reference
In-Depth Information
Siebielec, G. et al., 2004. Near-and mid-infrared diffuse reflectance spectroscopy for
measuring soil metal content.
Soenksen, D.G., Garini, Y. & Bar-Am, I., 1996. Multicolor FISH using a novel spectral
bioimaging system. In Proceedings of SPIE . p. 303.
Sparks, D.L., 1995. Environmental soil chemistry. New York .
Stallard, B.R., Garcia, M.J. & Kaushik, S., 1996. Near-IR Reflectance Spectroscopy for the
Determination of Motor Oil Contamination in Sandy Loam. Applied Spectroscopy ,
50(3), pp.334-338.
Stark, E., Luchter, K. & Margoshes, M., 1986. Near-Infrared Analysis (NIRA): A Technology
for Quantitative and Qualitative Analysis. Applied Spectroscopy Reviews , 22(4), p.335.
Stoner, E.R. et al., 1980. Atlas of soil reflectance properties. Research Bulletin, Agricultural
Experiment Station, Purdue University , (962).
Stuffler, T. et al., 2007. The EnMAP hyperspectral imager-An advanced optical payload for
future applications in Earth observation programmes. Acta Astronautica , 61(1-6),
pp.115-120.
Taylor, D.G., Nenadic, C.M. & Crable, J.V., 1970. Infrared Spectra for Mineral Identification.
American Industrial Hygiene Association Journal , 31(1), p.100.
Tetra Tech EM Inc. for USEPA, 2000. Demonstration Plan - Field Measurement Technologies
for Total Petroleum Hydrocarbons in Soil. United States Environmental Protection
Agency , EPA/600/R-01/060, pp.1-245.
United States Environmental Protection Agency (USEPA), 1983. Methods for Chemical
Analysis of Water and Wastes. Government Printing Office: Washington, DC .
United States Environmental Protection Agency (USEPA), 1978. Test Method for Evaluating
Total Recoverable Petroleum Hydrocarbon, Method 418.1 (Spectrophotometric,
Infrared). Government Printing Office: Washington, DC .
Vane, G., Goetz, A.F.H. & Wellman, J.B., 1984. Airborne imaging spectrometer: A new tool
for remote sensing. IEEE Transactions on Geoscience and Remote Sensing , 22(6),
pp.546-549.
Vohland, M., Bossung, C. & Fründ, H.C., 2009. A spectroscopic approach to assess trace-
heavy metal contents in contaminated floodplain soils via spectrally active soil
components. Journal of Plant Nutrition and Soil Science , 172(2), pp.201-209.
Winkelmann, K.H., 2005. On the applicability of imaging spectrometry for the detection and
investigation of contaminated sites with particular consideration given to the detection of
fuel hydrocarbon contaminants in soil . Unpublished PhD Thesis. Brandenburg
University of Technology.
Wold, S., Martens, H. & Wold, H., 1983. The multivariate calibration problem in chemistry
solved by the PLS method. Matrix Pencils , pp.286-293.
Wu, Y. et al., 2007. A mechanism study of reflectance spectroscopy for investigating heavy
metals in soils. Soil Science Society of America Journal , 71(3), pp.918-926.
Wu, Y.Z. et al., 2005. Feasibility of Reflectance Spectroscopy for the Assessment of Soil
Mercury Contamination. Environmental Science & Technology , 39(3), pp.873-878.
Zachara, J.M. & Westall, J.C., 1999. Chemical modeling of ion adsorption in soils. Soil
physical chemistry , 2, pp.47-95.
Zhou, G. et al., 2010. Heavy Metal Stress to P. Tomentosa in Coal Mining Area and Its
Spectral Feature. In Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th
International Conference on . pp. 1-4.
Zwanziger, Z. & Heidrun, F., 1998. Near infrared spectroscopy of fuel contaminated sand
and soil. I. preliminary results and calibration study. Journal of Near Infrared
Spectroscopy , 6(1), pp.189-197.
Search WWH ::




Custom Search