Biomedical Engineering Reference
In-Depth Information
[7]
Williams, C. E., et al., “Pathophysiology of Perinatal Asphyxia,” Clin. Perinatol., Vol. 20,
No. 1993, pp. 305-323.
[8]
Geocadin, R. G., et al., “A Novel Quantitative EEG Injury Measure of Global Cerebral
Ischemia,” Clin. Neurophysiol. , Vol. 111, No. 10, 2000, pp. 1779-1787.
[9]
Geocadin, R. G., et al., “Early Electrophysiological and Histologic Changes After Global
Cerebral Ischemia in Rats,” Mov Disord, Vol. 15, Suppl. 1, 2000, pp. 14-21.
[10]
Geocadin, R. G., et al., “Neurological Recovery by EEG Bursting After Resuscitation from
Cardiac Arrest in Rats,” Resuscitation, Vol. 55, No. 2, 2002, pp. 193-200.
[11]
Shannon, C. E., “A Mathematical Theory of Communication,” Bell Syst. Tech. J., Vol. 27,
No. 1948, pp. 623-656.
[12]
Shin, H. C., et al., “Quantitative EEG and Effect of Hypothermia on Brain Recovery After
Cardiac Arrest,” IEEE Trans. on Biomed. Eng., Vol. 53, No. 6, 2006, pp. 1016-1023.
[13]
Shin, H. C., et al., “Quantitative EEG Assessment of Brain Injury and Hypothermic
Neuroprotection After Cardiac Arrest,” Conf. Proc. IEEE Eng. Med. Biol. Soc., Vol. 1, No.
2006, pp. 6229-6232.
[14]
Rosso, O. A., et al., “Wavelet Entropy: A New Tool for Analysis of Short Duration Brain
Electrical Signals,” J. Neurosci. Methods, Vol. 105, No. 1, 2001, pp. 65-75.
[15]
Bezerianos, A., S. Tong, and N. Thakor, “Time-Dependent Entropy Estimation of EEG
Rhythm Changes Following Brain Ischemia,” Ann. Biomed. Eng., Vol. 31, No. 2, 2003,
pp. 221-232.
[16]
Thakor, N. V., and S. Tong, “Advances in Quantitative Electroencephalogram Analysis
Methods,” Ann. Rev. Biomed. Eng., Vol. 6, No. 2004, pp. 453-495.
[17]
Tong, S., et al., “Parameterized Entropy Analysis of EEG Following Hypoxic-Ischemic
Brain Injury,” Phys Lett A, Vol. 314, No. 5-6, 2003, pp. 354-361.
[18]
Tong, S., et al., “Nonextensive Entropy Measure of EEG Following Brain Injury from Car-
diac Arrest,” Physica A, Vol. 305, No. 3-4, 2002, pp. 619-628.
[19]
Brain Resuscitation Clinical Trial II Study Group, “A Randomized Clinical Trial of Cal-
cium Entry Blocker Administration to Comatose Survivors of Cardiac Arrest: Design,
Methods, and Patient Characteristics,” Control Clin. Trials, Vol. 12, No. 4, 1991,
pp. 525-545.
[20]
Longstreth, W. T., Jr., et al., “Randomized Clinical Trial of Magnesium, Diazepam, or
Both
After
Out-of-Hospital
Cardiac
Arrest,”
Neurology,
Vol.
59,
No.
4,
2002,
pp. 506-514.
[21]
Bernard, S. A., et al., “Treatment of Comatose Survivors of Out-of-Hospital Cardiac Arrest
with Induced Hypothermia,” N. Engl. J. Med., Vol. 346, No. 8, 2002, pp. 557-563.
[22]
Shankaran, S., et al., “Whole-Body Hypothermia for Neonates with Hypoxic-Ischemic
Encephalopathy,” N. Engl. J. Med., Vol. 353, No. 15, 2005, pp. 1574-1584.
[23]
Nolan, J. P., et al., “Therapeutic Hypothermia After Cardiac Arrest: An Advisory State-
ment by the Advancement Life Support Task Force of the International Liaison Committee
on Resuscitation,” Resuscitation, Vol. 57, No. 3, 2003, pp. 231-235.
[24]
Holmes, G. L., J. Rowe, and J. Hafford, “Significance of Reactive Burst Suppression Fol-
lowing Asphyxia in Full Term Infants,” Clin. Electroencephalog., Vol. 14, No. 3, 1983,
pp. 138-141.
[25]
Kramer, R. S., et al., “The Effect of Profound Hypothermia on Preservation of Cerebral
ATP Content During Circulatory Arrest,” J. Thorac. Cardiovasc. Surg., Vol. 56, No. 5,
1968, pp. 699-709.
[26]
Welsh, F. A., R. E. Sims, and V. A. Harris, “Mild Hypothermia Prevents Ischemic Injury in
Gerbil Hippocampus,” J. Cereb. Blood Flow Metab., Vol. 10, No. 4, 1990, pp. 557-563.
[27]
Busto, R., et al., “Effect of Mild Hypothermia on Ischemia-Induced Release of
Neurotransmitters and Free Fatty Acids in Rat Brain,” Stroke, Vol. 20, No. 7, 1989,
pp. 904-910.
Search WWH ::




Custom Search