Database Reference
In-Depth Information
The remainder of the proof is by bounding the additive terms on the right-hand
side of the above equation separately:
I LRAL 1
1 δ
1
RA
kk 1
E ðÞ
RAL 1
1 þ kk 1
kk 1 A
γε
1
0
1
1
kk 1
1 αγ
@
A γε:
¼
1 þ
Moreover, row stochasticity of P implies that (cf. Eq. (3.2.4) in [Pap11])
0
1
X
j∈ n \ i e
1 ¼ max
i
I γP
@
A
j
1 γe
p ii
j þ γ
p ij
n
i ∈ n 1 γe
Þ
¼ max
j
p ii
j þ γ
ð
1 e
p ii
,
¼ 1 þ γ
1 2 min
i
n e
p ii
which, by definition of A , gives rise to
1 q ðÞ T
A
¼ max
k∈ m
I n k αγ
¼ 1 þ 1 2 c
ð
Þαγ
1
1
21 αγ
ð
c
Þ
1
E ðÞ
γε:
1 αγ
As for E (2) , we obtain
L kk 1
1 α
1
1 αγ γεγ:
1
E ðÞ
kk 1 kk 1 ¼
y δ
Finally, we bound kE (3)
k
ε < γ 1 1 αγ
as follows: the assumption that
ð
Þ
yields
1
RAL 1
k 1 δ
kk 1 γε 1 αγ ¼
k
R
δ
AL
:
1
Hence, RAL and RAL satisfy the hypothesis of Theorem 2.7.2 in [GVL96,
pp. 80-86], and we may apply the perturbation provided therein to establish
Search WWH ::




Custom Search