Database Reference
In-Depth Information
Proof Notice that the component of the commutative diagram (10) is the two com-
mutative diagrams bellow:
@
Thus, f = T E ◦[
_
]
: X →T ( 1 ) and, by Proposition 39 , f = T
s E , so that
(
T
,
[
f,h
]
) is an adequate denotational semantics for the syntax initial free algebra
(
T P X,
I ) (in Proposition 38 ), and the commutative diagram
follows from the following possible cases (note that the mapping h is defined in the
proof of Proposition 37 ):
1. When nil
Act a i Act {{
D P S } n 2 (
) n ,
D P S
={
}∪
D P S
Σ P (
)
nil
i
= T E
0 = T (nil)
0 ,
T E D ρ (k)(nil)
=⊥
0 .
T E
=
=⊥
and hence h
Σ P (
)(nil)
h(nil)
2. When (i,
L B )
Σ P (
D P S
) ,
= T E A
L B
a i
T E D ρ (k)(i,
L B )
= T a i .
L B ) =
a i T E
L B ) .
E
(
(
Thus, h
Σ P (
T E
)(i,
L B )
=
h(i,
T (
E
(
L B )))
=
a i
(
T (
E
(
L B ))) .
L B 1 ,...,
L B n )
D P S
3. When (
Σ P (
) ,
= T
n E
L B n )
T E D ρ (k)(
L B 1 ,...,
L B n )
(
L B 1 ),...,
E
(
n T E
L B 1 ) ,...,
T E
L B n ) .
=+
(
(
Hence,
h Σ P ( T E )( L B 1 ,..., L B n ) = h T E ( L B 1 ) ,..., T E ( L B n )
=+
n T E ( L B 1 ) ,..., T E ( L B n ) .
Search WWH ::




Custom Search