Database Reference
In-Depth Information
Proposition 3
For each schema mapping
M AB : A B
with
E M )
=
DeCompose(
M AB ),
let us define the mapping-operads
MakeOperads {
Φ E } and
MakeOperads {
Φ M } .
M E =
M M =
Let S ={ χ 1 ,...,χ m }
M AB . If
for a mapping-interpretation α ( with A = α ( A ) and B = α ( B ) ) such that for each
implication χ i
be the set of implications of the normalized SOtgd of
S , q Ai ( x i )
r i ( t i ) , and its derived corresponding implications
q Ai ( x i )
r q i ( y i ) in S E and (r q i ( y i )
ψ i ( x i ))
r i ( t i ) in S M ( in the algorithm
Decompose ), we have α(r q i )
=
π y i
q Ai ( x i )
A , then :
Flux α, MakeOperads( M AB ) =
Flux(α, M E )
Flux(α, M M ).
For such a mapping-interpretation α with the instance-mapping
f = α MakeOperads( M AB ) : A B,
α ( M E )
we denote the decomposition of f by two instance-mappings ep(f )
=
:
α ( M M )
=
:
C =
) and S C =
A
TC and in(f )
TC
B , with schema
(S C ,
q i M E 1 (q i )
α (S C ) .
={
r q 1 ,...,r q m }
and C
=
Proof Let M AB =
MakeOperads(
M AB )
={
q 1 ,...,q m , 1 r }
with q i =
v i ·
q A,i
O(r i, 1 ,...,r i,k ,r i ) ,for1
q 1 ,...,q m , 1 r }
={
i
m , so that MakeOperads(Φ E )
,
with q i = v i · q A,i O(r i, 1 ,...,r i,k ,r q i ) ,for1
i m , and MakeOperads(Φ M ) =
q 1 ,...,q m , 1 r }
O(r q i ,r i ) .
First of all, from the fact that α(r q i ) = π y i q Ai ( x i ) A ,for1
with q i
{
i m , it follows,
from Definition 11 for a mapping-interpretation, that (a.1.) the functions α(v i ) and
α(v i ) are equal. Then, from Definition 13 ,
(i) Flux(α, M E )
q i =
v i ·
q A,i =
=
Flux(α, M AB )
=
T
{
π y i
e
[
( _ ) j /r i,j ] 1 j k A |
M E ,q i
(e
( _ )( y i ))
O(r i 1 , 1 ,...,r i k ,k ,r q i ) and y i = ∅} =
T
{
π y i
q A,i ( x i )
A |
1
i
m and y i =∅}=
T
{
α(r q i )
|
1
i
m and y i =
TC (because α(v i ) is an identity function and hence an injection as well,
∅}=
for 1
i
m such that y i =∅
).
q i =
v i ·
q C,i =
(ii) Flux(α, M M )
=
T
{
π y i
e
[
( _ ) 1 /r q i ] C |
(e
( _ )( t i ))
M M ,q i
O(r q i ,r i ) and y i =∅}=
T
{
π y i
r q i ( y i )
ψ i ( x i )
C |
1
i
m and
y i =∅}=
m and y i =∅}=
(since ψ i ( d ) is true when q A,i ( d ) is true, and q A,i ( x i )
{
π y i
C |
T
r q i ( y i )
1
i
r q i ( y i ) is satisfied
by α )
= T { α(r q i ) |
if α(v i ) is an injection for all 1
1
i m and y i =∅}
i m
0
such that y i =∅;⊥
otherwise,
if α(v i ) (equal to α(v i ) )is
=
(from (a.1.))
= T { α(r q i ) |
1
i m and y i =∅}
0
an injection for all 1
i m such that y i =∅;⊥
otherwise,
=
T
{
π y i
q Ai ( x i )
A |
1
i
m and y i =∅}
if α(v i ) is an injection for all
Search WWH ::




Custom Search