Biomedical Engineering Reference
In-Depth Information
56. Maltsev VA, Vinogradova TM, Bogdanov KY, Lakatta EG, Stern MD (2004) Diastolic
calcium release controls the beating rate of rabbit sinoatrial node cells: numerical modeling
of the coupling process. Biophys J 86:2596-2605
57. Maltsev VA, Vinogradova TM, Lakatta EG (2006) The emergence of a general theory of
the initiation and strength of the heartbeat. J Pharmacol Sci 100:338-369
58. Mangoni ME et al (2000) Facilitation of the L-type calcium current in rabbit sino atrial
cells: effect on cardiac automaticity. Cardiovasc Res 48:375-392
59. Mangoni ME et al (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac
pacemaker activity. Proc Natl Acad Sci USA 100:5543-5548
60. Mangoni ME et al (2006) Voltage-dependent calcium channels and cardiac pacemaker
activity: from ionic currents to genes. Prog Biophys Mol Biol 90:38-63
61. Marionneau C et al (2005) Specific pattern of ionic channel gene expression associated
with pacemaker activity in the mouse heart. J Physiol 562:223-234
62. Matsuura H, Ehara T, Ding WG, OmatsuKanbe M, Isono T (2002) Rapidly and slowly
activating components of delayed rectifier K(+) current in guineapig sino atrial node
pacemaker cells. J Physiol 540:815-830
63. Matthes J et al (2004) Disturbed atrioventricular conduction and normal contractile
function in isolated hearts from Cav1.3-knockout mice. Naunyn Schmiedebergs Arch
Pharmacol 369:554-562
64. Miake J, Marban E, Nuss HB (2002) Biological pacemaker created by gene transfer.
Nature 419:132-133
65. Mitsuiye T, Shinagawa Y, Noma A (2000) Sustained inward current during pacemaker
depolarization in mammalian sinoatrial node cells. Circ Res 87:88-91
66. Noma A, Morad M, Irisawa H (1983) Does the ''pacemaker current'' generate the
diastolic depolarization in the rabbit SA node cells? Pflugers Arch 397:190-194
67. Nuss HB et al (1996) Reversal of potassium channel deficiency in cells from failing hearts
by adenoviral gene transfer: a prototype for gene therapy for disorders of cardiac
excitability and contractility. Gene Ther 3:900-912
68. Nuss HB, Marban E, Johns DC (1999) Overexpression of a human potassium channel
suppresses cardiac hyperexcitability in rabbit ventricular myocytes. J Clin Invest 103:889-
896
69. Oosthoek PW et al (1993) Immunohistochemical delineation of the conduction system. I:
The sinoatrial node. Circ Res 73:473-481
70. Platzer J et al (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking
class D L-type Ca2+ channels. Cell 102:89-97
71. Plotnikov AN et al (2004) Biological pacemaker implanted in canine left bundle branch
provides ventricular escape rhythms that have physiologically acceptable rates. Circulation
109:506-512
72. Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM (2001) Arrhythmogenesis and
contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier
potassium current, and residual beta-adrenergic responsiveness. Circ Res 88:1159-1167
73. Potapova I et al (2004) Human mesenchymal stem cells as a gene delivery system to create
cardiac pacemakers. Circ Res 94:952-959
74. Qu J et al (2003) Expression and function of a biological pacemaker in canine heart.
Circulation 107:1106-1109
75. Qu J et al (2004) MiRP1 modulates HCN2 channel expression and gating in cardiac
myocytes. J Biol Chem 279:43497- 43502
76. Qu J et al (2001) HCN2 overexpression in newborn and adult ventricular myocytes:
distinct effects on gating and excitability. Circ Res 89:E8-E14
Search WWH ::




Custom Search