Chemistry Reference
In-Depth Information
Kojima S, Kuriki Y, Yazaki K, Miura K-I. Stabilization of the fibrous structure of an a-helix-
forming peptide by sequence reveral. Biochem Biophys Res Commun 2005;331:577-582.
Kojima S, Kuriki Y, Yoshida T, Yazaki K, Miura K-I. Fibril formation by an amphipathic
a-helix-forming polypeptide produced by gene engineering. Proc Jpn Acad Ser B Phys
Biol Sci 1997;73B:7-11.
Kotch FW, Raines RT. Self-assembly of synthetic collagen triple helices. Proc Natl Acad Sci
USA 2006;103:3028-3033.
Lamm MS, Rajagopal K, Schneider JP, Pochan DJ. Laminated morphology of nontwisting
b-sheet fibrils constructed via peptide self-assembly. J Am Chem Soc 2005;127:
16692-16770.
Lansbury PT Jr, Costa PR, Griffiths JM, Simon EJ, Auger M, Halverson KJ, Kocisko DA,
Hendsch ZS, Ashburn TT, Spencer RG, Tidor B, Griffin RG. Structural model for the
b-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a
C-terminal peptide. Nat Struct Biol 1995;2:990-998.
Lashuel HA, LaBrenz SR, Woo L, Serpell LC, Kelly JW. Protofilaments, filaments, ribbons
and fibrils from peptidomimetic self-assembly implications for amyloid fibril formation
and materials science. J Am Chem Soc 2000;122:5262-5277.
Lazar KL, Miller-Auer H, Getz GS, Orgel JPRO, Meredith SC. Helix- turn-helix peptides
that
form a-helical fibrils:
turn sequences drive fibril
structure. Biochemistry
2005;44:12681-12689.
Lepere M, Chevallard C, Hernandez J-F, Mitraki A, Guenoun P. Multiscale surface self-
assembly of an amyloid-like peptide. Langmuir 2007;23:8150-8155.
Lupas A. Predicting coiled-coil regions in proteins. Curr Opin Struct Biol 1997;7:388-393.
Maji SK, Haldar D, Drew MGB, Banerjee A, Das AK, Banerjee A. Self-assembly of b-turn
forming synthetic tripeptides into supramolecular b-sheets and amyloid-like fibrils in the
solid state. Tetrahedron 2004;60:3251-3259.
Martinek TA, Hetenyi A, Fulop L, Mandity IM, Toth GK, Dekany I, Fulop F. Secondary struc-
ture dependent self-assembly of b-peptide into nanosized fibrils and membranes. Angew
Chem Int Ed 2006;45:2396-2400.
Matsumura S, Uemura S, Mihara H. Fabrication of nanofibers with uniform morphology by
self-assembly of designed peptides. Chem Eur J 2004;10:2789-2794.
Melnik TN, Villard V, Vasiliev V, Corradin G, Kajava AV, Potekhin SA. Shift of fibril-forming
ability of the designed a-helical coiled-coil peptides into the physiological pH region.
Protein Eng 2003;16:1125-1130.
Mesquida P, Ammann DL, MacPhee CE, McKendry RA. Microarrays of peptide fibrils created
by electrostatically controlled deposition. Adv Mater 2005;17:893-897.
Oakley MG, Hollenbeck JJ. The design of antiparallel coiled coils. Curr Opin Struct Biol
2001;11:450-457.
O'Shea EK, Klemm JD, Kim PS, Alber T. X-ray structure of the GCN4 leucine zipper, a
two-stranded, parallel coiled coil. Science 1991;254:539-544.
Ozbas B, Kretsinger J, Rajagopak K, Schneider JP, Pochan DJ. Salt-triggered peptide folding
and consequent self-assembly into hydrogels with tunable modulus. Macromolecules
2004;37:7331-7337.
Pagel K, Wagner SC, Samedov K, Von Beripsch H, Boettcher C, Koksch B. Random coils,
b-sheet ribbons, and a-helical fibers: one peptide adopting three different secondary
structures at will. J Am Chem Soc 2006;128:2196-2197.
Search WWH ::




Custom Search