Agriculture Reference
In-Depth Information
Duan GL, Zhou Y, Tong YP et al. (2007) A CDC25 homologue from rice functions as an arsenate
reductase. New Phytol 174:311-321
Ellis DR, Gumaelius L, Indriolo E et al. (2006) A novel arsenate reductase from the arsenic hyper-
accumulating fern Pteris vittata. Plant Physiol 141:1544-1554
Francesconi KA, Kuehnelt D (2002) Arsenic compounds in the environment. In: Frankenberg-
er JWT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, NY, USA,
pp 51-94
Ghosh M, Shen J, Rosen BP (1999) Pathways of As(III) detoxification in Saccharomyces cerevi-
siae. Proc Natl Acad Sci USA 96:5001-5006
Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential responses of arsenic stress in two
varieties of Brassica juncea . Chemosphere 74:1201-1208
González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) PHOSPHATETRANSPORTER-
TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the en-
doplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell
17:3500-3512
Ha SB, Smith AP, Howden R et al. (1999) Phytochelatin synthase genes from Arabidopsis and the
yeast Schizosaccharomyces pombe. Plant Cell 11:1153-1163
Hartly-Whitakar J, Ainsworth G, Meharg AA (2001) Copper- and arsenate-induced oxidative
stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713-722
Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1-16
Isayenkov SV, Maathuis FJM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a
pathway for arsenite uptake. FEBS Lett 582:1625-1628
Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants. 3rd Edn. CRC Press, Boca
Raton, FL
Landrieu I, da Costa M, De Veylder L et al. (2004) A small CDC25 dual-specificity tyrosine-
phosphatase isoform in Arabidopsis thaliana . Proc Natl Acad Sci USA 101:13380-13385
Landrieu I, Hassan S, Sauty M et al. (2004) Characterization of the Arabidopsis thaliana
Arath;CDC25 dual-specificity tyrosine phosphatase. Biochem Biophys Res Commun
322:734-739
Li Y, Dankher OP, Carreira L et al. (2006) The shoot-specific expression of gamma-glutamylcyste-
ine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance
to mercury and arsenic. Plant Physiol 141:288-298
Li Y, Dhankher O, Carreira L et al. (2005) Engineered overexpression of g-glutamylcysteine
synthetase in plants confers high level arsenic and mercury tolerance. Environ Toxicol Chem
24:1376-1386
Li YJ, Dhankher OP, Carreira L et al. (2004) Overexpression of phytochelatin synthase in Arabi-
dopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol
45:1787-1797
Liu WJ, Zhu YG, Hu Y et al. (2006) Arsenic sequestration in iron plaque, its accumulation and
speciation in mature rice plants ( Oryza sativa L). Environ Sci Technol 40:5730-5736
Liu ZJ, Boles E, Rosen BP (2004) Arsenic trioxide uptake by hexose permeases in Saccharomyces
cerevisiae. J Biol Chem 279:17312-17318
Lombi E, Zhao FJ, Fuhrmann M et al. (2002) Arsenic distribution and speciation in the fronds of
the hyperaccumulator Pteris vittata. New Phytol 156:195-203
Ma JF, Yamaji N, Mitani N et al. (2008) Transporters of arsenite in rice and their role in arsenic
accumulation in rice grain. Proc Natl Acad Sci USA 105:9931-9935
Ma LQ, Komar KM, Tu C et al. (2001) A fern that hyperaccumulates arsenic. Nature 409:579-579
Meharg AA, Naylor J, Macnair MR (1994) Phosphorus nutrition of arsenate tolerant and nontoler-
ant phenotypes of velvet grass. J Environ Qual 23:234-238
Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and
nonresistant plant species. New Phytologist 154:29-43
Mei XQ, Ye ZH, Wong MH (2009) The relationship of root porosity and radial oxygen loss on
arsenic tolerance and uptake in rice grains and straw. Environ Pollut 157:2550-2557
Search WWH ::




Custom Search