Agriculture Reference
In-Depth Information
Heredia A, Guillen R, Jimenez A, Fernandezbolanos J et al (1993) Plant cell wall structure. Revista
Espanola De Ciencia Y Tecnologia De Alimentos 33:113-131
Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P et al (2005a) Influence of
nano-TiO 2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104:249-260
Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P et al (2005b) Effects of nano-TiO 2 on
photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269-279
Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB et al (2005) Cytotoxicity of
carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci
Technol 39:1378-1383
Jo YK, Kim BH et al (2009) Antifungal activity of silver ions and nanoparticles on phytopatho-
genic fungi. Plant Dis 93:1037-1043
Joseph T, Morrison et al (2006) Nanotechnology in agriculture and food.www.nanoforum.org
Khodakovskaya M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dra-
matically affect seed germination and plant growth. ACS Nano 3:3221-3227
Kim SW et al (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt
pathogen Raffaelea sp. J Microbiol Biotechnol 19:760-764
Knoblauch M, Peters WS (2004a) Biomimetic actuators: Where technology and cell biology
merge. Cell Mol Life Sci 61:2497-2509
Knoblauch M, Peters WS (2004b) Forisomes, a novel type of Ca 2+ - dependent contractile protein
motor. Cell Motil Cytoskeleton 58:137-142
Knox JP et al (1995) The extracellular-matrix in higher-plants: Developmentally-regulated proteo-
glycans and glycoproteins of the plant-cell surface. FASEB J 9:1004-1012
Kumar V, Yadav SK et al (2009) Plant-mediated synthesis of silver and gold nanoparticles and
their applications. J Chem Technol Biotechnol 84:151-157
Kuzma J et al (2007) Moving forward responsibly: Oversight for the nanotechnology-biology
interface. J Nanoparticle Res 9:165-182
Lei Z et al (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under
UV-Beta radiation. Biol Trace Elem Res 121:69-79
Lin D, Xing B et al (2007) Phytotoxicity of nanoparticles: Inhibition of seed germination and root
growth. Environ Pollut 150:243-250
Lin J, Zhang H, Chen Z, Zheng Y et al (2010) Penetration of lipid membranes by gold nanoparti-
cles: Insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4:5421-5429
Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H et al (2008) RubiscoActi-
vase mRNA expression in spinach: Modulation by nanoanatase treatment. Biol Trace Elem Res
122:168-178
Liu Y, Laks P, Heiden P et al (2002) Controlled release of biocides in solid wood. III. Preparation
and characterization of surfactant-free nanoparticles. J Appl Polym Sci 86:615-621
Lowe CR et al (2000) Nanobiotechnology: The fabrication and applications of chemical and bio-
logical nanostructures. Curr Opin Struct Biol 10:428
Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide
nanoparticles on root elongation of plants. Chemosphere 78(3):273-279
Madigan MT, Martinko JM, Parker J (2003) Brock biology of microorganisms.Prentice Hall/Pear-
son Higher Education Group, Upper Saddle River, NJ
Maynard AD et al (2006) Nanotechnology: The next big thing, or much ado about nothing? Ann
Occup Hyg 51:1-12
Maysinger D et al (2007) Nanoparticles and cells: Good companions and doomed partnerships.
Org Biomol Chem 5(15):2335-2342
Min JS et al (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopatho-
genic fungi. J Plant Pathol 25:376-380
Mingyu S et al (2007) Effects of nano-anatase TiO 2 on absorption, distribution of light and photo-
reduction activities of chloroplast membrane of spinach. Biol Trace Elem Res 118:120-130
Nel A, Xia T, Madler L, Li N et al (2006) Toxic potential of materials at the nanolevel. Sci
311:622-627
Search WWH ::




Custom Search