Civil Engineering Reference
In-Depth Information
In an entirely similar way, we can estimate the velocity
vector
in terms of
ux by
(
)
()
ux r
+
(
)
(
)
ˆ
(
)
( )
() ()
() () ()
ux r
ˆ
+=
Eux rux
+
=
a ru x b ru xu x
+
+
i
i
ij
j
ijk
j
k
[3.16]
() () () ()
+
cruxuxux
+
......
ijkl
j
k
l
We can see that relation [3.10] is now generalized to the
nonlinear case [ADR 79, TUN 80, ADR 88, GUE 89]. The
coefficients
ij ar ,
ijkl cr are determined
equivalently from equation [3.11] by minimizing the error
()
ijk br and
()
()
{
}
2
(
)
(
)
ˆ
[3.17]
eEuxr uxr
=
+
+
i
i
i
in the sense of the least squares. Thus, we begin by
determining
e
e
e
i
i
i
=
=
=
....
=
0
a
b
c
ij
ijk
ijkl
which gives us the system
() ()
()
() () ()
()
Eu xu x a r
+
Eu xu xu x b r
+
j
k
ik
j
k
l
ikl
() () () ()
()
() (
)
+
Eu xu xu xu x c
r
=
Eu xu x r
+
j
k
l
m
iklm
j
i
() () () ()
() () () ()
()
Eu xu xu x a r
+
Eu xu xu xu x b
r
+
j
k
l
i
j
k
l
m
lm
() () () () ()
()
() ()
(
)
+
Eu xu xu xu xu x c
r
=
Eu xu x
i ux r
+
j
k
l
m
n
ilmm
j
k
In the simple case of the linear estimation
(
, the problem is reduced to the Yule-
Walker system [3.13]. The matrix
)
( )
( )
ux r
ˆ i
+=
a ru x
ij
j
given in relation [3.14]
R ij
,
(
)
() ()
becomes
and
the
vector
REuxux
=
ij
i
j
Search WWH ::




Custom Search