Chemistry Reference
In-Depth Information
[92] Siegal, G., Ab, E., and Schultz, J. (2007). Integration of fragment screening and library design.
Drug Discovery Today 12 , 1032-1039.
[93] Hopkins, A. L., Groom, C. R., and Alex, A. (2004). Ligand efficiency: a useful metric for lead
selection. Drug Discovery Today 9 , 430-431.
[94] Abad-Zapatero, C., and Metz, J. T. (2005). Ligand efficiency indices as guideposts for drug
discovery. Drug Discovery Today 10 , 464-469.
[95] Kuntz, I. D., Chen, K., Sharp, K. A., and Kollman, P. A. (1999). The maximal affinity of
ligands. Proceedings of the National Academy of Sciences of the nUnited States of America
96 , 9997-10002.
[96] Vangrevelinghe, E., and Rudisser, S. (2007). Computational approaches for fragment
optimization. Current Computer-Aided Drug Design 3 , 69-83.
[97] Babaoglu, K., and Shoichet, B. K. (2006). Deconstructing fragment-based inhibitor discovery.
Nature Chemical Biology 2 , 720-723.
[98] Davis,A. M., Keeling, D. J., Steele, J., Tomkinson, N. P., and Tinker,A. C. (2005). Components
of successful lead generation. Current Topics in Medicinal Chemistry 5 , 421-439.
[99] Keseru, G. M., and Makara, G. M. (2006). Hit discovery and hit-to-lead approaches. Drug
Discovery Today 11 , 741-748.
[100] Tsao, D. H. H., Sutherland, A. G., Jennings, L. D., Li, Y. H., Rush, T. S., Alvarez, J. C., Ding,
W. D., Dushin, E. G., Dushin, R. G., Haney, S. A., Kenny, C. H., Malakian, A. K., Nilakantan,
R., and Mosyak, L. (2006). Discovery of novel inhibitors of the ZipA/FtsZ complex by
NMR fragment screening coupled with structure-based design. Bioorganic and Medicinal
Chemistry 14 , 7953-7961.
[101] Poppe, L., Harvey, T. S., Mohr, C., Zondlo, J., Tegley, C. M., Nuanmanee, O., and Cheetham,
J. (2007). Discovery of ligands for Nurr1 by combined use of NMR screening with different
isotopic and spin-labeling strategies. Journal of Biomolecular Screening 12 , 301-311.
[102] DeLano, W. L. (2002). Unraveling hot spots in binding interfaces: progress and challenges.
Current Opinions in Structural Biology 12 , 14-20.
[103] Lewell, X. Q., Judd, D. B., Watson, S. P., and Hann, M. M. (1998). RECAP - retrosynthetic
combinatorial analysis procedure: a powerful new technique for identifying privileged
molecular fragments with useful applications in combinatorial chemistry. Journal of Chemical
Informatics and Computer Science 38 , 511-522.
[104] Fechner, U., and Schneider, G. (2006). Flux (1): a virtual synthesis scheme for fragment-based
de novo design. Journal of Chemical Information and Modeling 46 , 699-707.
[105] Fechner, U., and Schneider, G. (2007). Flux (2): comparison of molecular mutation and
crossover operators for ligand-based de novo design. Journal of Chemical Information and
Modeling 47 , 656-667.
[106] Fejzo, J., Lepre, C. A., Peng, J. W., Bemis, G. W., Ajay, Murcko, M. A., and Moore, J. M.
(1999). The SHAPES strategy: an NMR-based approach for lead generation in drug discovery.
Chemistry and Biology 6 , 755-769.
[107] Kolb, P., and Caflisch, A. (2006). Automatic and efficient decomposition of two-dimensional
structures of small molecules for fragment-based high-throughput docking. Journal of
Medicinal Chemistry 49 , 7384-7392.
[108] Vieth, M., Siegel, M. G., Higgs, R. E., Watson, I. A., Robertson, D. H., Savin, K. A., Durst,
G. L., and Hipskind, P. A. (2004). Characteristic physical properties and structural fragments
of marketed oral drugs. Journal of Medicinal Chemistry 47 , 224-232.
[109] Shuker, S. B., Hajduk, P. J., Meadows, R. P., and Fesik, S. W. (1996). Discovering high-affinity
ligands for proteins: SAR by NMR. Science 274 , 1531-1534.
[110] Rohrig, C. H., Loch, C., Guan, J. Y., Siegal, G., and Overhand, M. (2007). Fragment-based
synthesis and SAR of modified FKBP ligands: influence of different linking on binding
affinity. ChemMedChem 2 , 1054-1070.
Search WWH ::




Custom Search