Chemistry Reference
In-Depth Information
Severin, J. M., Walter, K., Magdalinos, P., Jakob, C. G., Wagner, R., and Beutel, B. A.
(2004). Discovery of potent inhibitors of dihydroneopterin aldolase using CrystaLEAD
high-throughput X-ray crystallographic screening and structure-directed lead optimization.
Journal of Medicinal Chemistry 47 , 1709-1718.
[44] Howard, N., Abell, C., Blakemore, W., Chessari, G., Congreve, M., Howard, S., Jhoti, H.,
Murray, C. W., Seavers, L. C. A., and van Montfort, R. L. M. (2006). Application of fragment
screening and fragment linking to the discovery of novel thrombin inhibitors. Journal of
Medicinal Chemistry 49 , 1346-1355.
[45] Bright, H., Watts, P., Carroll, T., and Fenton, R. (2003). The validation of GBV-B as a
surrogate model for HCV in the drug discovery process. Antiviral Research 57 , A85.
[46] Orry, A. J. W., Abagyan, R. A., and Cavasotto, C. N. (2006). Structure-based Development of
target-specific compound libraries. Drug Discovery Today 11 , 261-6.
[47] Combs, A. P. (2007). Structure-based drug design of new leads for phosphatase research.
Idrugs 10 , 112-115.
[48] Hubbard, R. E., Chen, I., and Davis, B. (2007). Informatics and modeling challenges in
fragment-based drug discovery. Current Opinion in Drug Discovery , and Development 10 ,
289-297.
[49] Villar, H. O., and Hansen, M. R. (2007). Computational techniques in fragment based drug
discovery. Current Topics in Medicinal Chemistry 7 , 1509-1513.
[50] Reddy, A. S., Pati, S. P., Kumar, P. P., Pradeep, H. N., and Sastry, G. N. (2007). Virtual screen-
ing in drug discovery - a computational perspective. Current Protein and Peptide Science
8 , 329-351.
[51] Hesterkamp, T., Barker, J., Davenport, A., and Whittaker, M. (2007). Fragment based drug
discovery using fluorescence correlation spectroscopy techniques: challenges and solutions.
Current Topics in Medicinal Chemistry 7 , 1582-1591.
[52] Barker, J., Courtney, S., Hesterkamp, T., Ullman, D., and Whittaker, M. (2006). Fragment
screening by biochemical assay. Expert Opinion in Drug Discovery 1 , 225-236.
[53] Annis, D. A., Nickbarg, E., Yang, X., Ziebell, M. R., and Whitehurst, C. E. (2007). Affinity
selection-mass spectrometry screening techniques for small molecule drug discovery. Current
Opinion in Chemical Biology 11 , 518-526.
[54] Jahnke, W. (2007). Perspectives of biomolecular NMR in drug discovery: the blessing and
curse of versatility. Journal of Biomolecular NMR 39 , 87-90.
[55] Klages, J., Coles, M., and Kessler, H. (2007). NMR-based screening: a powerful tool in
fragment-based drug discovery. Analyst 132 , 693-705.
[56] Papeo, G., Giordano, P., Brasca, M. G., Buzzo, F., Caronni, D., Ciprandi, F., Mongelli, N.,
Veronesi, M., Vulpetti, A., and Dalvit, C. (2007). Polyfluorinated amino acids for sensitive
F-19 NMR-based screening and kinetic measurements. Journal of the American Chemical
Society 129 , 5665-5672.
[57] Taylor, J. D., Gilbert, P. J., Williams, M.A., Pitt, W. R., and Ladbury, J. E. (2007). Identification
of novel fragment compounds targeted against the pY pocket of v-Src SH2 by computational
and NMR screening and thermodynamic evaluation. Proteins: Structure Function and
Bioinformatics 67 , 981-990.
[58] Schuffenhauer, A., Ruedisser, S., Marzinzik, A. L., Jahnke, W., Blommers, M. J. J., Selzer,
P., and Jacoby, E. (2005). Library design for fragment based screening. Current Topics in
Medicinal Chemistry 5 , 751-62.
[59] Baurin, N.,Aboul-Ela, F., Barril, X., Davis, B., Drysdale, M., Dymock, B., Finch, H., Fromont,
C., Richardson, C., Simmonite, H., and Hubbard, R. E. (2004). Design and characterization
of libraries of molecular fragments for use in NMR screening against protein targets. Journal
of Chemical Information and Computer Sciences 44 , 2157-2166.
Search WWH ::




Custom Search